分析 (1)利用△AEF≌△DEB得到AF=DB,得出AF=DC,根据一组对边平行且相等的四边形是平行四边形可证明四边形ADCF为平行四边形;
(2)结合(1)可知四边形ADCF为平行四边形,再结等腰三角形的性质可得AD⊥CD,可判定出四边形ADCF为矩形;
(3)当△ABC满足∠BAC=90°时,则四边形ADCF是菱形,证明AD=CD即可.
解答 解:
(1)证明:∵AF∥BC,
∴∠FAE=∠EDB,∠AFE=∠EBD.
∵E是AD的中点,
∴AE=DE,
在△AEF和△DEB中,
$\left\{\begin{array}{l}{∠FAE=∠EDB}\\{∠AFE=∠EBD}\\{AE=DE}\end{array}\right.$,
∴△AEF≌△DEB(AAS),
∴AF=DB,
又∵BD=DC,
∴AF=DC,
∴四边形ADCF为平行四边形;
(2)证明:∵AB=AC,且AD为BC边上的中线,
∴AD⊥CD,
即∠ADB=90°,
∴四边形ADCF为矩形;
(3)解:当△ABC满足∠BAC=90°时,则四边形ADCF是菱形,
理由如下:
∵∠BAC=90°,AD是BC边的中线,
∴AD=DC=$\frac{1}{2}$BC,
又∵四边形ADCF为平行四边形,
∴四边形ADCF是菱形.
点评 本题考查了平行四边形的判定、全等三角形的判定与性质、矩形的判定、等腰直角三角形的性质等知识;熟练掌握平行四边形的判定,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2π}{3}$-$\frac{\sqrt{3}}{2}$ | B. | $\frac{π}{3}$-$\frac{1}{2}$ | C. | $\frac{2π}{3}$-$\frac{1}{2}$ | D. | π-$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com