精英家教网 > 初中数学 > 题目详情

问题:探索等腰三角形—腰上的高与底边所成的角与顶角的关系.

(1)为了解决这个问题,我们可从特殊情形入手,如图①,在△ABC中,AB=AC,∠A=40°,BD是边AC上的高,则∠DBC=________°.如图②,在△ABC中,AB=AC,∠A=90°,BD是边AC上的高,则∠DBC=________°.如图③,在△ABC中,AB=AC,∠A=120°,BD是边AC上的高,则∠DBC=________°;

(2)猜想,∠A与∠DBC的关系是________;

(3)对上述猜想,你能作出解释吗?(提示:作AE⊥BC,垂足为E)

答案:略
解析:

(1)204560(2)A=2DBC(3)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为
 
.(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=
34
x+6;l2:y=-3x+6.若l2上的一点M到l1的距离是3,请你利用以上结论求解点M的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

探究学习:探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高(如图1).
(1)若等腰△ABC的面积为24 cm2,腰的长为8 cm,则腰AC上的高BD的长为
 
cm;
(2)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1、h2
①若M在线段BC上,请你结合图2证明:h1+h2=h;
②当点M在BC延长线上时,h1、h2、h之间的关系为
 
.(直接写出结论,不必证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源:2011年江苏省盐城市阜宁县GSJY中考数学模拟试卷(解析版) 题型:解答题

探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为______.(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=x+6;l2:y=-3x+6.若l2上的一点M到l1的距离是3,请你利用以上结论求解点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷(19)(解析版) 题型:解答题

探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为______.(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=x+6;l2:y=-3x+6.若l2上的一点M到l1的距离是3,请你利用以上结论求解点M的坐标.

查看答案和解析>>

同步练习册答案