【题目】平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.
【答案】(1,1)或(,)或(2,2)
【解析】
分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P2的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论
∵点A的坐标为(2,0),
∴OA=2.
分三种情况考虑,如图所示.
①当OP1=AP1时,∵∠AOP1=45°,
∴△AOP1为等腰直角三角形.
又∵OA=2,
∴点P1的坐标为(1,1);
②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形.
∵OP2=OA=2,
∴OB=BP2=,
∴点P2的坐标为(,);
③当AO=AP3时,△OAP3为等腰直角三角形.
∵OA=2,
∴AP3=OA=2,
∴点P3的坐标为(2,2).
综上所述:点P的坐标为(1,1)或(,)或(2,2).
故答案为:(1,1)或(,)或(2,2).
科目:初中数学 来源: 题型:
【题目】如图,C是AB的中点,D是BE的中点,
(1)AB=4cm,BE=3cm,则CD=____________cm;
(2)AB=4cm,DE=2cm,则AE=____________cm;
(3)AB=4cm,BE=2cm,则AD=____________cm;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,点 C 在以 AB 为直径的⊙O 上,点 D 在 AB 的延长线上,∠BCD =∠A.
(1)求证:CD 为⊙O 的切线;
(2)过点 C 作 CE⊥AB 于点 E.若 CE = 2,cos D =,求 AD 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.
(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为正整数的实数a的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)操作发现:
如图①,在中,,点D是BC上一点,沿AD折叠,使得点C恰好落在AB上的点E处.请写出AB、AC、CD之间的关系________________________________;
(2)问题解决:
如图②,若(1)中;,其他条件不变,请猜想AB、AC、CD之间的关系,并证明你的结论;
(3)类比探究:
如图③,在四边形ABCD中,,,,,连接AC、点E是CD上一点,沿AE折叠,使得点D正好落在AC上的F处,若,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①BE=DF;②∠AEB=75°;③CE=2;④S正方形ABCD=2+,其中正确答案是( )
A.①②B.②③C.①②④D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,EF∥AD,∠1=∠2,∠BAC=72 o,求∠AGD的度数.
解:因为EF∥AD
所以∠2= ( )
又因为∠1=∠2
所以∠1=∠3
所以AB∥ ( )
所以∠BAC+ =180 o( )
因为∠BAC=72 o
所以∠AGD= ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名队员参加射击训练(各射击10次),成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下表:
平均成绩/环 | 中位数/环 | 众数/环 | 方差/环2 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)求出表格中a,b,c的值;
(2)分别运用表中的统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com