精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=x2-4x+3与x 轴交于两点A、B,其顶点为C.
(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;
(2)求证:△ABC是等腰直角三角形;
(3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

【答案】分析:(1)假如点M(m,-2)在该抛物线上,则-2=m2-4m+3,通过变形为:m2-4m+5=0,由根的判别式就可以得出结论.
(2)如图,根据抛物线的解析式求出点C的坐标,再利用勾股定理求出AB、AC和BC的值,由勾股定理的逆定理就可以得出结论.
(3)假设存在点P,根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,就可以求得P点的纵坐标为1,代入抛物线的解析式就可以求出P点的横坐标.
解答:解:(1)假如点M(m,-2)在该抛物线上,
∴-2=m2-4m+3,
∴m2-4m+5=0,
∴△=(-4)2-4×1×5=-4<0,
∴此方程无实数解,
∴点M(m,-2)不会在该抛物线上;

(2)过点C作CH⊥x轴,交x轴与点H,连接CA、CB,
如图,当y=0时,x2-4x+3=0,x1=1,x2=3,由于点A在点B左侧,
∴A(1,0),B(3,0)
∴OA=1,OB=3,
∴AB=2
∵y=x2-4x+3
∴y=(x-2)2-1,
∴C(2,-1),
∴AH=BH=CH=1
在Rt△AHC和Rt△BHC中,由勾股定理得,
AC=,BC=
∴AC2+BC2=AB2
∴△ABC是等腰直角三角形;

(3)存在这样的点P.
根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,
∴点P的纵坐标是1,
∵点P在抛物线y=x2-4x+3上,
∴当y=1时,即x2-4x+3=1,解得x1=2-,x2=2+
∴点P的坐标是(2-,1)或(2+,1).

点评:本题是一道二次函数的综合试题,考查了二次函数图象上点的坐标特征,勾股定理的逆定理的运用,根的判别式的使用,平行四边形的判定及性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案