(1)证明:∵沿对角线BD对折,点C落在点C′的位置,
∴∠A=∠C′,AB=C′D
∴在△GAB与△GC′D中,
∴△GAB≌△GC′D
∴AG=C′G;
(2)解:∵点D与点A重合,得折痕EN,
∴DM=4cm,ND=5cm,
∵AD=8cm,AB=6cm,
在Rt△ABD中,BD=
=10cm,
∵EN⊥AD,AB⊥AD,
∴EN∥AB,
∴DN=
BD=5cm,
在Rt△MND中,
∴MN=
=3(cm),
由折叠的性质可知∠NDE=∠NDC,
∵EN∥CD,
∴∠END=∠NDC,
∴∠END=∠NDC=∠NDE,
∴EN=ED,设EM=x,则ED=EN=x+3,
由勾股定理得ED
2=EM
2+DM
2,即(x+3)
2=x
2+4
2,
解得x=
,即EM=
cm.
分析:(1)通过证明△GAB≌△GC′D即可证得线段AG、C′G相等;
(2)在直角三角形DMN中,利用勾股定理求得MN的长,则EN-MN=EM的长.
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等.同时考查了勾股定理在折叠问题中的运用.