精英家教网 > 初中数学 > 题目详情
已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连结D′E.
(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E;
(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.
(3)如图3,在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D′EC是等腰直角三角形?(直接写出结论,不必说明理由)
分析:(1)根据旋转的性质可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠D′AE,再利用“边角边”证明△ADE和△AD′E全等,根据全等三角形对应边相等证明即可;
(2)根据旋转的性质可得AD=AD′,再利用“边边边”证明△ADE和△AD′E全等,然后根据全等三角形对应角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;
(3)求出∠D′CE=90°,然后根据等腰直角三角形斜边等于直角边的
2
倍可得D′E=
2
CD′,再根据旋转的性质解答即可.
解答:(1)证明:∵△ABD绕点A旋转得到△ACD′,
∴AD=AD′,∠CAD′=∠BAD,
∵∠BAC=120°,∠DAE=60°,
∴∠D′AE=∠CAD′+∠CAE,
=∠BAD+∠CAE,
=∠BAC-∠DAE,
=120°-60°,
=60°,
∴∠DAE=∠D′AE,
在△ADE和△AD′E中,
AD=AD′
∠DAE=∠D′AE
AE=AE

∴△ADE≌△AD′E(SAS),
∴DE=D′E;

(2)解:∠DAE=
1
2
∠BAC.
理由如下:在△ADE和△AD′E中,
AD=AD′
AE=AE
DE=D′E

∴△ADE≌△AD′E(SSS),
∴∠DAE=∠D′AE,
∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,
∴∠DAE=
1
2
∠BAC;

(3)解:∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=∠ACD′=45°,
∴∠D′CE=45°+45°=90°,
∵△D′EC是等腰直角三角形,
∴D′E=
2
CD′,
由(2)DE=D′E,
∵△ABD绕点A旋转得到△ACD′,
∴BD=C′D,
∴DE=
2
BD.
点评:本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分线的定义).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案