【题目】形如:的函数叫二次函数,它的图象是一条抛物线.类比一元一次方程的解可以看成两条直线的交点的横坐标;则一元二次方程的解可以看成抛物线与直线(轴)的交点的横坐标;也可以看成是抛物线与直线________的交点的横坐标;也可以看成是抛物线________与直线的交点的横坐标;
科目:初中数学 来源: 题型:
【题目】如图1,AB是⊙O的直径,BC是⊙O的切线,OC∥弦AD
(1)求证:CD是⊙O的切线;
(2)如图2,连AC交BD于E.若AE=CE,求tan∠ACB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知是等边三角形,边上有一点,且、两点之间的距离为.
(1)求的坐标(用含有的式子表示);
(2)如图(1),若点在线段上运动,点在轴的正半轴上运动.当的值最小时,.
问:的面积是否为定值,若是,求其值;若不是,请说明理由.
(3)如图(2),若在外还有一点,连接、、、,,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线过,,三点,点的坐标是,点的坐标是,动点在抛物线上.
________,________,点的坐标为________;(直接填写结果)
是否存在点,使得是以为直角边的直角三角形?若存在,求出所有符合条件的点的坐标;若不存在,说明理由;
过动点作垂直轴于点,交直线于点,过点作轴的垂线.垂足为,连接,当线段的长度最短时,求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)先化简,再求值:a(a-2b)+(a+b)2,其中a=-1,b=;
(2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.
【答案】(1)原式= 2a2+b2=2+2=4;(2)原式=4.
【解析】试题分析:(1)利用完全平方公式展开,化简,代入求值. (2) 利用完全平方公式展开,化简,整体代入求值.
解:(1)原式=a2-2ab+a2+2ab+b2=2a2+b2.
当a=-1,b=时,原式=2+2=4.
(2)原式=2x2-3x+1-(x2+2x+1)+1=x2-5x+1=3+1=4.
【题型】解答题
【结束】
22
【题目】已知化简(x2+px+8)(x2-3x+q)的结果中不含x2项和x3项.
(1)求p,q的值.
(2)x2-2px+3q是否是完全平方式?如果是,请将其分解因式;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】百汇超市服装柜在销售中发现:“七彩”牌童装平均每天可售出件,每件盈利元.为了迎接“元旦”,商场决定采取适降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价元,那么平均每天就可多售出件.
如果每件降价元,那么平均每天可售出几件?
要想平均每天销售这种童装上盈利元,那么每件童装应降价多少元?
用配方法说明:要想盈利最多,每件童装应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MON=20° ,点A B分别是射线OM、ON上的动点(A、B不与点0重合),若ABOM,在射线ON上有一点C,设∠OAC=x°,下列x的值不能使△ABC为等腰三角形的是( )
A.20
B.45
C.50
D.125
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.
(1)求证: AD=BE.
(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.
(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,△ABC中,∠BAC=90°,AB=AC,D,E在BC上,∠DAE=45°,为了探究BD,DE,CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD,DE,CE之间的等量关系式是 ;(无须证明)
(2)如图2,在△ABC中,∠BAC=120°,AB=AC,D,E在BC上,∠DAE=60°,∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD,DE,CE之间的等量关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com