Ò»´ÎÆÚÖп¼ÊÔÖУ¬A¡¢B¡¢C¡¢D¡¢EÎåλͬѧµÄÊýѧ¡¢Ó¢Óï³É¼¨µÈÓйØÐÅÏ¢ÈçϱíËùʾ(µ¥Î»£º·Ö)£º

(1)ÇóÕâÎåλͬѧÔÚ±¾´Î¿¼ÊÔÖÐÊýѧ³É¼¨µÄƽ¾ù·ÖºÍÓ¢Óï³É¼¨µÄ±ê×¼²î£»

(2)ΪÁ˱Ƚϲ»Í¬Ñ§¿Æ¿¼ÊԳɼ¨µÄºÃÓë²î£¬²ÉÓñê×¼·ÖÊÇÒ»¸öºÏÀíµÄÑ¡Ôñ£¬±ê×¼·ÖµÄ¼ÆË㹫ʽÊÇ£º±ê×¼·Ö£½(¸öÈ˳ɼ¨£­Æ½¾ù³É¼¨)¡Â³É¼¨±ê×¼²î£®

´Ó±ê×¼·Ö¿´£¬±ê×¼·Ö´óµÄ¿¼ÊԳɼ¨¸üºÃ£®ÇëÎÊAͬѧÔÚ±¾´Î¿¼ÊÔÖУ¬ÊýѧÓëÓ¢ÓïÄĸöѧ¿Æ¿¼µÃ¸üºÃ£¿

ÓÑÇéÌáʾ£ºÒ»×éÊý¾ÝµÄ±ê×¼²î¼ÆË㹫ʽÊÇ

S£½£¬ÆäÖÐΪn¸öÊý¾Ýx1¡¢x2¡­xnµÄƽ¾ùÊý£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»´ÎÆÚÖп¼ÊÔÖУ¬¼×¡¢ÒÒ¡¢±û¡¢¶¡¡¢ÎìÎåλͬѧµÄÊýѧ¡¢Ó¢Óï³É¼¨µÈÓйØÐÅÏ¢ÈçϱíËùʾ£º£¨µ¥Î»£º·Ö£©
¼× ÒÒ ±û ¶¡ Îì ƽ¾ù·Ö ±ê×¼²î
Êýѧ 71 72 69 68 70
2
Ó¢Óï 88 82 94 85 76 85
£¨1£©ÇóÕâÎåλͬѧÔÚ±¾´Î¿¼ÊÔÖÐÊýѧ³É¼¨µÄƽ¾ù·ÖºÍÓ¢Óï³É¼¨µÄ±ê×¼²î£»
£¨2£©ÎªÁ˱Ƚϲ»Í¬Ñ§¿Æ¿¼ÊԳɼ¨µÄºÃÓë²î£¬²ÉÓñê×¼·ÖÊÇÒ»¸öºÏÀíµÄÑ¡Ôñ£¬±ê×¼·ÖµÄ¼ÆË㹫ʽ£º
±ê×¼·Ö=£¨¸öÈ˳ɼ¨Ò»Æ½¾ù³É¼¨£©¡Â³É¼¨±ê×¼²î£®
´Ó±ê×¼·Ö¿´£¬±ê×¼·Ö´óµÄ¿¼ÊԳɼ¨¸üºÃ£¬ÇëÎʼ×ͬѧÔÚ±¾´Î¿¼ÊÔÖУ¬ÊýѧÓëÓ¢ÓïÄĸöѧ¿Æ¿¼µÃ¸üºÃ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»´ÎÆÚÖп¼ÊÔÖУ¬A¡¢B¡¢C¡¢D¡¢EÎåλͬѧµÄÊýѧ¡¢Ó¢Óï³É¼¨µÈÓйØÐÅÏ¢ÈçϱíËùʾ£º£¨µ¥Î»£º·Ö£©
A B C D E ¼«²î ƽ¾ù³É¼¨ ±ê×¼²î
Êýѧ³É¼¨ 71 72 69 68 70 70
2
Ó¢Óï³É¼¨ 88 82 94 85 76 85
£¨1£©Ìîд±í¸ñÖеĿյµ£»
£¨2£©ÎªÁ˱Ƚϲ»Í¬Ñ§¿Æ¿¼ÊԳɼ¨µÄºÃÓë²î£¬²ÉÓñê×¼·ÖÊÇÒ»¸öºÏÀíµÄÑ¡Ôñ£¬±ê×¼·ÖµÄ¼ÆË㹫ʽÊÇ£º±ê×¼·Ö=£¨¸öÈ˳ɼ¨-ƽ¾ù³É¼¨£©¡Â³É¼¨±ê×¼²î£®
´Ó±ê×¼·Ö¿´£¬±ê×¼·Ö´óµÄ¿¼ÊԳɼ¨¸üºÃ£®ÇëÎÊAͬѧÔÚ±¾´Î¿¼ÊÔÖУ¬ÊýѧÓëÓ¢ÓïÄĸöѧ¿Æ¿¼µÃ¸üºÃ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»´ÎÆÚÖп¼ÊÔÖУ¬A¡¢B¡¢C¡¢D¡¢EÎåλͬѧµÄÊýѧ¡¢Ó¢Óï³É¼¨ÓÐÈçÏÂÐÅÏ¢£º
A B C D E ƽ¾ù·Ö ±ê×¼²î
Êýѧ 71 72 69 68 70
2
Ó¢Óï 88 82 94 85 76 85
£¨1£©ÔÚÉϱíÖÐÌîÈëÕâ5λͬѧÏàÓ¦µÄƽ¾ù·ÖºÍÓ¢Óï³É¼¨µÄ±ê×¼²î£®
£¨2£©ÓÉÓÚÊÔ¾íÄÑÒ׳̶ÈÓвî±ð£¬Òò´Ë±È½ÏijÈ˲»Í¬Ñ§¿Æ¿¼ÊԳɼ¨µÄºÃ»µ£¬²»ÄÜÖ»¿´Ñ§¿Æ¿¼ÊԵķÖÊý£®²ÉÓñê×¼·ÖÊÇÒ»¸öºÏÀíµÄÑ¡Ôñ£®±ê×¼·Ö´óµÄ¿¼ÊԳɼ¨Ïà¶Ô¸üºÃ£®±ê×¼·ÖµÄ¼ÆË㹫ʽÊÇ£º±ê×¼·Ö=£¨¸öÈ˳ɼ¨-ƽ¾ù³É¼¨£©¡Â³É¼¨±ê×¼²î£®Çë¼ÆËãAͬѧÔÚ±¾´Î¿¼ÊÔÖУ¬ÊýѧÓëÓ¢ÓïµÄ±ê×¼·Ö£®Äĸöѧ¿Æ¿¼µÃ¸üºÃ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»´ÎÆÚÖп¼ÊÔÖУ¬A¡¢B¡¢C¡¢D¡¢EÎåλͬѧµÄÊýѧ¡¢Ó¢Óï³É¼¨µÈÓйØÐÅÏ¢ÈçϱíËùʾ£º£¨µ¥Î»£º·Ö£©
   Æ½¾ù·Ö  ±ê×¼²î
Êýѧ   71 72   69  68  70    
2
 Ó¢Óï  88  82  94  85  76  85  
£¨1£©ÇóÕâÎåλͬѧÔÚ±¾´Î¿¼ÊÔÖÐÊýѧ³É¼¨µÄƽ¾ù·ÖºÍÓ¢Óï³É¼¨µÄ±ê×¼²î£»
£¨2£©ÎªÁ˱Ƚϲ»Í¬Ñ§¿Æ¿¼ÊԳɼ¨µÄºÃÓë²î£¬²ÉÓñê×¼·ÖÊÇÒ»¸öºÏÀíµÄÑ¡Ôñ£¬±ê×¼·ÖµÄ¼ÆË㹫ʽÊÇ£º±ê×¼·Ö=£¨¸öÈ˳ɼ¨Ò»Æ½¾ù³É¼¨£©¡Â³É¼¨±ê×¼²î£®
´Ó±ê×¼·Ö¿´£¬±ê×¼·Ö´óµÄ¿¼ÊԳɼ¨¸üºÃ£®ÇëÎÊAͬѧÔÚ±¾´Î¿¼ÊÔÖУ¬ÊýѧÓëÓ¢ÓïÄĸöѧ¿Æ¿¼µÃ¸üºÃ£¿
ÓÑÇéÌáʾ£ºÒ»×éÊý¾ÝµÄ±ê×¼²î¼ÆË㹫ʽÊÇS=
1
n
[(x1-
.
x
)2+(x2-
.
x
)2+¡­+(xn-
.
x
)2]
£¬ÆäÖÐ
.
x
Ϊn¸öÊý¾Ýx1£¬x2£¬¡­xnrµÄƽ¾ùÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»´ÎÆÚÖп¼ÊÔÖУ¬A¡¢B¡¢C¡¢D¡¢EÒ»¹²ÎåλͬѧµÄÊýѧ¡¢Ó¢ÓïµÈÓйØÇé¿öÈçϱíËùʾ£º
A B C D E ƽ¾ù·Ö ±ê×¼²î
Êýѧ 71 72 69 68 70
2
Ó¢Óï 88 82 94 85 76 85
£¨1£©Íê³ÉÉÏ±í£»
£¨2£©±È½Ï²»Í¬Ñ§¿Æ¿¼ÊԳɼ¨µÄºÃÓë²î£¬²ÉÓñê×¼·ÖÊÇÒ»¸öºÏÀíµÄÑ¡Ôñ£¬±ê×¼·ÖµÄ¼ÆË㹫ʽÊÇ£º±ê×¼·Ö=£¨¸öÈ˳ɼ¨-ƽ¾ù³É¼¨£©¡Â³É¼¨±ê×¼²î£¬´Ó±ê×¼·Ö¿´£¬±ê×¼·Ö´óµÄ¿¼ÊԳɼ¨¸üºÃ£®ÇëÄãÅжÏAͬѧÔÚ±¾´Î¿¼ÊÔÖУ¬ÊýѧÓëÓ¢ÓïÄĸöѧ¿Æ¿¼µÃ¸üºÃ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸