精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D

(1)求这条抛物线的表达式;

(2)联结AB、BC、CD、DA,求四边形ABCD的面积;

(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标

【答案】(1);(2)18;(3)E(0,

【解析】

试题分析:(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;

(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;

(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.

试题解析:(1)∵抛物线与y轴交于点C,∴C(0,﹣5),∴OC=5.

∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).

∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为

(2)由,得顶点D的坐标为(2,﹣9).连接AC,∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),又S△ABC=×4×5=10,S△ACD=×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18

(3)过点C作CH⊥AB,垂足为点H.

∵S△ABC=×AB×CH=10,AB=,∴CH=,在RT△BCH中,∠BHC=90°,BC=,BH==,∴tan∠CBH=.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴=,得EO=,∴点E的坐标为(0,).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一个多项式减去﹣2m结果等于m2+3m+2,这个多项式是(  )
A.m2+5m+2
B.m2﹣m﹣2
C.m2﹣5m﹣2
D.m2+m+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春节期间上映的第一部中国科幻电影《流浪地球》,斩获约4 670 000 000元票房,将4 670 000 000用科学记数法表示是(  )

A. 4.67×1010B. 0.467×1010C. 0.467×109D. 4.67×109

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P的坐标为(),点Q的坐标为(),且,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点PQ相关矩形.下图为点PQ 相关矩形的示意图

1)已知点A的坐标为(10

若点B的坐标为(31)求点AB相关矩形的面积;

C在直线x=3上,若点AC相关矩形为正方形,求直线AC的表达式;

2O的半径为,点M的坐标为(m3).若在O上存在一点N,使得点MN相关矩形为正方形,求m的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义a*b=ab+a+b,若3*x=27,则x的值是(

A. 3 B. 4 C. 6 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.

我们有多少种剪法,图1是其中的一种方法:

定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.

1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)

2ABC中,∠B=30°ADDEABC的三分线,点DBC边上,点EAC边上,且AD=BDDE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q

(1)求点A、点B、点C的坐标;

(2)求直线BD的解析式;

(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;

(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a3ab2分解因式的结果为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016四川省凉山州)阅读下列材料并回答问题:

材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为

古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式

我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:

下面我们对公式②进行变形:

这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式

问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F

(1)求△ABC的面积;

(2)求⊙O的半径

查看答案和解析>>

同步练习册答案