分析 根据小明同学的辅助线作法,证明△ABG≌△AEH,得BG=EH,AG=AH;再说明△AGH是等边三角形,则AG=GH,则EG=GH+EH=AG+BG.
解答 证明:如图,作∠GAH=∠EAB交GE于点H.
∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
∵又AB=AE,
∴△ABG≌△AEH.
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=60°,
∴△AGH是等边三角形.
∴AG=HG.
∴EG=GH+EH=AG+BG.
点评 本题考查了全等三角形的性质和判定,通过作一个角等于已知角,构建了全等三角形,将边AG、BG,利用相等关系平移到直线EG上,使问题得以解决.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com