【题目】抛物线y=ax2+bx+c(a≠0)如图所示,下列结论:①abc<0;②点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2;③b2>(a+c)2;④2a﹣b<0.正确的结论有( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】
利用抛物线开口方向得到a>0,利用抛物线的对称轴在y轴的左侧得到b>0,利用抛物线与y轴的交点在x轴下方得到c<0,则可对①进行判断;通过对称轴的位置,比较点(-3,y1)和点(1,y2)到对称轴的距离的大小可对②进行判断;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1时,a+b+c>0;x=-1时,a-b+c<0,则可对③进行判断;利用和不等式的性质可对④进行判断.
∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴在y轴的左侧,
∴a、b同号,
∴b>0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc<0,所以①正确;
∵抛物线的对称轴为直线x=﹣,
而﹣1<﹣<0,
∴点(﹣3,y1)到对称轴的距离比点(1,y2)到对称轴的距离大,
∴y1>y2,所以②正确;
∵x=1时,y>0,即a+b+c>0,
x=﹣1时,y<0,即a﹣b+c<0,
∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<0,
∴b2>(a+c)2,所以③正确;
∵﹣1<﹣<0,
∴﹣2a<﹣b,
∴2a﹣b>0,所以④错误.
故选:B.
科目:初中数学 来源: 题型:
【题目】旅行社为吸引游客组团去黄满寨风景区旅游,推出了如下收费标准:如果人数不超过25人,人均旅游费用为:1000元;如果人数超过25人,每超过1人,人均旅游费用降低20元,但人均旅游费用不低于700元.某单位组织员工去黄满寨风景区旅游,共支付给旅行社旅游费用27000元,请问:
(1)该单位旅游人数超过25人吗?说明理由.
(2)这次共有多少名员工去黄满寨风景区旅游?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.
(1)求证:△BCE≌△DCF;
(2)求CF的长;
(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(-4,2)、B(n,-4)两点是一次函数y=kx+b和反比例函数图象的两个交点.
(1)求一次函数和反比例函数的解析式.
(2)求的面积.
(3)观察图象,直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B两点(点A在点B的左侧,与y轴交于点C,点A、点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图,在二次函数对称轴上是否存在点P,使△APC的周长最小?若存在,请求出点P的坐标;若不存在,那个说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为.已知山坡坡度,即,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,点A的坐标是(﹣2,1),点B的坐标是(1,n);
(1)分别求一次函数与反比例函数的解析式;
(2)求△AOB的面积;
(3)直接写出不等式kx+b≥的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣+bx+c的图象经过点A(﹣1,0)和点C(0,2),点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式.
(2)已知点F(0,),当点P在x轴正半轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com