精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是


  1. A.
    15°
  2. B.
    30°
  3. C.
    45°
  4. D.
    60°
B
分析:根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,再由直角三角形斜边中线的性质可得出∠MCD=∠D,从而求得∠A的度数.
解答:在直角△ABC中,CM=AM=MB,(直角三角形的斜边中线等于斜边一半),
∴∠A=∠ACM,
由折叠的性质可得:∠A=∠D,∠MCD=∠MCA,AM=DM,
∴MC=MD,∠A=∠ACM=∠MCE,
∵AB⊥CD,
∴∠CMB=∠DMB,∠CEB=∠MED=90°,
∵∠B+∠A=90°,∠B+∠ECB=90°,
∴∠A=∠ECB,
∴∠A=∠ACM=∠MCE=∠ECB,
∴∠A=∠ACB=30°,
故选B.
点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案