B
分析:根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,再由直角三角形斜边中线的性质可得出∠MCD=∠D,从而求得∠A的度数.
解答:在直角△ABC中,CM=AM=MB,(直角三角形的斜边中线等于斜边一半),
∴∠A=∠ACM,
由折叠的性质可得:∠A=∠D,∠MCD=∠MCA,AM=DM,
∴MC=MD,∠A=∠ACM=∠MCE,
∵AB⊥CD,
∴∠CMB=∠DMB,∠CEB=∠MED=90°,
∵∠B+∠A=90°,∠B+∠ECB=90°,
∴∠A=∠ECB,
∴∠A=∠ACM=∠MCE=∠ECB,
∴∠A=
∠ACB=30°,
故选B.
点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.