精英家教网 > 初中数学 > 题目详情
(2004•茂名)已知:△ABC的两边AB、BC的长是关于x的一元二次方程x2-(2k+2)x+k2+2k=0的两个实数根,第三边长为10.问当k为何值时,△ABC是等腰三角形?
【答案】分析:因为方程有两个实根,所以△>0,从而用k的式子表示方程的解,根据△ABC是等腰三角形,分AB=AC,BC=AC,两种情况讨论,得出k的值.
解答:解法一:∵△=[-(2k+2)]2-4(k2+2k)=4k2+8k+4-4k2-8k≥0,(2分)
∴x=
∴x1=k+2,x2=k,(4分)
设AB=k+2,BC=k,显然AB≠BC
而△ABC的第三边长AC为10
(1)若AB=AC,则k+2=10,得k=8,即k=8时,△ABC为等腰三角形;(7分)
(2)若BC=AC,则k=10,即k=10时.△ABC为等腰三角形.(9分)
解法二:由已知方程得:(x-k-2)(x-k)=0
∴x1=k+2,x2=k(4分)
[以下同解法一].
点评:解本题要充分利用条件,选择适当的方法求解k的值,从而证得△ABC为等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•茂名)已知:如图,在直角坐标系中,以点M(1,0)为圆心、直径AC为的圆与y轴交于A、D两点.
(1)求点A的坐标;
(2)设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M的切线并对你的结论加以证明;
(3)在(2)的前提下,连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若,抛物线y=ax2+bx+c经过B、M两点,且它的顶点到x轴的距离为h.求这条抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2004年广东省茂名市中考数学试卷(解析版) 题型:解答题

(2004•茂名)已知:如图,在直角坐标系中,以点M(1,0)为圆心、直径AC为的圆与y轴交于A、D两点.
(1)求点A的坐标;
(2)设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M的切线并对你的结论加以证明;
(3)在(2)的前提下,连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若,抛物线y=ax2+bx+c经过B、M两点,且它的顶点到x轴的距离为h.求这条抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《四边形》(07)(解析版) 题型:解答题

(2004•茂名)已知:如图,点E、F、G、H分别是梯形ABCD四条边上的中点,AD∥BC,AB=CD=EG=4.
(1)求梯形ABCD的周长;
(2)∠1与∠2是否相等?为什么?
(3)求证:四边形EFGH是菱形.

查看答案和解析>>

科目:初中数学 来源:2004年广东省茂名市中考数学试卷(解析版) 题型:解答题

(2004•茂名)已知:如图,点E、F、G、H分别是梯形ABCD四条边上的中点,AD∥BC,AB=CD=EG=4.
(1)求梯形ABCD的周长;
(2)∠1与∠2是否相等?为什么?
(3)求证:四边形EFGH是菱形.

查看答案和解析>>

同步练习册答案