精英家教网 > 初中数学 > 题目详情
1.课题学习:我们知道二次函数的图象是抛物线,它也可以这样定义:如果一个动点M(x,y)到定点A(0,m)(m>0)的距离与它到定直线y=-m的距离相等,那么动点M形成的图形就是抛物线y=ax2(a>0)的图象,如图所示.
(1)探究:当x≠0时,a与m有何数量关系?
(2)应用:已知动点M(x,y)到定点A(0,4)的距离与到定直线y=-4的距离相等,请写出动点M形成的抛物线的解析式.
(3)拓展:根据抛物线的平移变换,抛物线y=$\frac{1}{4}$(x-1)2+2的图象可以看作到定点A(1,3)的距离与它到定直线y=1的距离相等的动点M(x,y)所形成的图形.
(4)若点D的坐标是(1,8),在(2)中求得的抛物线上是否存在点P,使得PA+PD最短?若存在,求出点P的坐标,若不存在,请说明理由.

分析 (1)根据定义,MA=MB,列出等式,即可解决问题.
(2)利用(1)的结论,直接写出结果.
(3)根据定义,利用(1)的结论可以解决问题.
(4)如图所示,过点D作直线y=-4的垂线垂足为M,与抛物线的交点就是的点P,此时PA+PD=PD+PM最短,求出点P坐标即可.

解答 解:(1)由定义可知,MA=MB,
∴x2+(y-m)2=(y+m)2
∵y=ax2
∴x2=$\frac{y}{a}$,
∴$\frac{y}{a}$=4my,
∴a=$\frac{1}{4m}$.

(2)由(1)可知,a=$\frac{1}{16}$,
∴抛物线的解析式为y=$\frac{1}{16}$x2

(3)∵抛物线顶点坐标(1,2),a=1,
∴抛物线y=$\frac{1}{4}$(x-1)2+2的图象可以看作到定点A(1,3)的距离与它到定直线y=1的距离相等的动点M(x,y)所形成的图形.
故答案为1,3,1.

(4)如图所示,过点D作直线y=-4的垂线垂足为M,与抛物线的交点就是的点P,此时PA+PD=PD+PM最短(垂线段最短),

此时点P坐标(1,$\frac{1}{16}$).

点评 本题考查二次函数的综合题、解题的关键是理解题意,学会利用新的结论解决问题,属于中考创新题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.
(1)求证:四边形DBEC是平行四边形;
(2)若AC=6,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.把方程x2-2x-3=0化为(x+h)2=k的形式来求解的方法我们叫配方法,其中h,k为常数,那么本题中h+k的值是3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若关于x、y的二元一次方程组$\left\{\begin{array}{l}2x-3y=p\\ x+y=5\end{array}\right.$的解满足x+2y=8,则p的值为-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.当m取何值时,代数式$\frac{3-m}{2}$的值不大于3?并写出所有满足条件的负整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知BC=EF,BC∥EF,∠A=∠D,∠ABF=∠DEC,求证:AF=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.若三角形三条边的长分别为2,x-1,3,求x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列方程是一元二次方程的是 (  )
A.x-y2=1B.$\frac{1}{{x}^{2}}$-1=0C.5(x-1)2=3(x+2)2+2x2D.$\frac{{x}^{2}}{2}$-$\frac{x-1}{3}$=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.
(1)求证:△BDE为等腰三角形;
(2)连接OB,若OB⊥DE,求证:△ABC是等边三角形.

查看答案和解析>>

同步练习册答案