分析 (1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;
(2)连结DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.
(3)先证得△EHF∽△BEF,根据相似三角形的性质求得BF=10,进而根据直角三角形斜边中线的性质求得OE=5,进一步求得OH,然后解直角三角形即可求得OA,得出AF.
解答 证明:(1)如图,连接OE.
∵BE⊥EF,
∴∠BEF=90°,
∴BF是圆O的直径.
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切线;
(2)如图,连结DE.
∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE.
在△CDE与△HFE中,
$\left\{\begin{array}{l}{∠CDE=∠HFE}\\{∠C=∠EHF=90°}\\{EC=EH}\end{array}\right.$,
∴△CDE≌△HFE(AAS),
∴CD=HF.
(3)由(2)得CD=HF,又CD=1,
∴HF=1,
在Rt△HFE中,EF=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$,
∵EF⊥BE,
∴∠BEF=90°,
∴∠EHF=∠BEF=90°,
∵∠EFH=∠BFE,
∴△EHF∽△BEF,
∴$\frac{EF}{BF}$=$\frac{HF}{EF}$,即$\frac{\sqrt{10}}{BF}$=$\frac{1}{\sqrt{10}}$,
∴BF=10,
∴OE=$\frac{1}{2}$BF=5,OH=5-1=4,
∴Rt△OHE中,cos∠EOA=$\frac{4}{5}$,
∴Rt△EOA中,cos∠EOA=$\frac{OE}{OA}$=$\frac{4}{5}$,
∴$\frac{5}{OA}$=$\frac{4}{5}$,
∴OA=$\frac{25}{4}$,
∴AF=$\frac{25}{4}$-5=$\frac{5}{4}$.
点评 本题主要考查了切线的判定,全等三角形的判定与性质,三角形相似的判定和性质以及解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com