精英家教网 > 初中数学 > 题目详情
精英家教网如图,直角梯形OABC中,O为坐标原点,OA=OC,点C的坐标是(0,8),以点B为顶点的抛物线y=ax2+bx+c经过原点和x轴上的点A.求抛物线的解析式.
分析:根据题意得,点A,B,O的坐标分别为(8,0),(4,8),(0,0),把点代入解析式,组成方程组即可求得.
解答:解:∵OA=OC,点C的坐标是(0,8),
∴OA=OC=8,
∴点A的坐标为(8,0),
∵点B是顶点,
∴点B的坐标为(4,8),精英家教网
由抛物线y=ax2+bx+c经过原点,点A,点B,
列方程组,得
c=0
64a+8b+c=0
16a+4b+c=8

解得
a=-
1
2
b=4
c=0

∴抛物线解析式为y=-
1
2
x2+4x
点评:此题考查了数形结合思想,考查了二次函数的性质.解题的关键是采用待定系数法求函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
精英家教网
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形能否成为菱形?若能,请直接写出符合条件的x值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形OABF中,∠OAB=∠B=90°,A点在x轴上,双曲线y=
k
x
过点F,与AB交于E点,连EF,若
BF
OA
=
2
3
,S△BEF=4,则k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形OABC中,∠OAB=∠B=90°,A点在x轴上,双曲线y=
kx
过点C和AB中点D,若S梯形OABC=6,则该双曲线的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D精英家教网是BC上一点,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△A'EF,求△A'EF与五边形OEFBC重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上.OA∥BC,OA=4
2
,OC=
3
2
2

∠OAB=45°,D是BC上一点,CD=
3
2
2
.E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,设OE=x,AF=y.
(1)AB=
 
,BC=
 
,∠DOE=
 

(2)证明△ODE∽△AEF,并确定y与x之间的函数关系;
(3)当AF=EF时,将△AEF沿EF折叠,得到△A′EF,求△A′EF与五边形OEFBC重叠部分的面积.
精英家教网

查看答案和解析>>

同步练习册答案