精英家教网 > 初中数学 > 题目详情
如图所示,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形的三边距离之和PD+PE+PF等于(  )
A.
3
B.2
3
C.4
3
D.无法确定

连接AP、BP、CP,设等边三角形的高为h
∵正三角形ABC边长为2
∴h=
22-12
=
3

∵S△BPC=
1
2
BC•PD

S△APC=
1
2
AC•PE

S△APB=
1
2
AB•PF

∴S△ABC=
1
2
BC•PD+
1
2
AC•PE+
1
2
AB•PF

∵AB=BC=AC
∴S△ABC=
1
2
BC•(PD+PE+PF)
=
1
2
BC•h

∴PD+PF+PE=h=
3

故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

等腰三角形的顶角是120°,底边上的高是3cm,则腰长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为(  )
A.6B.12C.32D.64

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中,正确的是(  )
A.等边三角形的“三线合一”
B.有一个角是60°的三角形是等边三角形
C.在直角三角形中,直角边等于斜边的一半
D.有两个角相等的三角形是等边三角形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知AB=AC,∠APC=60°.
(1)求证:△ABC是等边三角形;
(2)若BC=4
3
,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC是等边三角形,点D是边BC上(除B、C外)的任意一点,∠ADE=60°,且DE交△ABC外角∠ACF的平分线CE于点E
(1)求证:∠1=∠2;
(2)求证:AD=DE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是(  )
A.Ll=L2B.L1>L2C.L2>L1D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:等边△ABC的边长为a.
探究(1):如图1,过等边△ABC的顶点A、B、C依次作AB、BC、CA的垂线围成△MNG,求证:△MNG是等边三角形且MN=
3
a;
探究(2):在等边△ABC内取一点O,过点O分别作OD⊥AB、OE⊥BC、OF⊥CA,垂足分别为点D、E、F.
①如图2,若点O是△ABC的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1. OD+OE+OF=
3
2
a;结论2. AD+BE+CF=
3
2
a;
②如图3,若点O是等边△ABC内任意一点,则上述结论1,2是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.

查看答案和解析>>

同步练习册答案