精英家教网 > 初中数学 > 题目详情
解方程(组)和不等式(组):
(1)2(x+1)-3(x+2)=0
(2)
x-y=3
3x-8y=14

(3)
3x-2
5
2x+1
3
-1

(4)
2x-3<6-x
1-4x≤5x-2
分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;
(2)从第一个方程得到y=x-3,然后利用代入消元法求解即可;
(3)根据一元一次不等式的解法求解即可;
(4)先求出两个不等式的解集,再求其公共解.
解答:解:(1)去括号得,2x+2-3x-6=0,
移项得,2x-3x=-2+6,
合并同类项得,-x=4,
系数化为1得,x=-4;

(2)
x-y=3①
3x-8y=14②

由①得,y=x-3③,
③代入②得,3x-8(x-3)=14,
解得x=2,
把x=2代入③得,y=2-3=-1,
所以方程组的解是
x=2
y=-1


(3)去分母得,3(3x-2)>5(2x+1)-15,
去括号得,9x-6>10x+5-15,
移项得,9x-10x>5-15+6,
合并同类项得,-x>-4,
系数化为1得,x<4;

(4)
2x-3<6-x①
1-4x≤5x-2②

由①得,x<3,
由②得,x≥
1
3

所以不等式组的解集是
1
3
≤x<3.
点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、列方程(组)或不等式(组)解应用题:
净朋家政公司要临时招聘室内、室外两种家政员工共150人,室内、室外两种员工每月的保底工资分别为600元和1000元.因工作需要,要求室外员工的人数不可低于室内员工人数的2倍,那么招聘室内员工多少人时,可使此家政公司每月付的保底工资最少最少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

列方程(组),不等式组(组)解应用题
(1)据某统计数据显示,在我国的所有城市中,按水资源情况可分为三类:暂不缺水城市,一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍,严重缺水城市数是我国城市总数的
51
332
.求我国严重缺水城市有多少座?
(2)马洋同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到商店为了激励营业员的工作积极性,扩大化销售量,实行“月总收入=基本工资+计件奖金”的方法.同时获得如下信息:
 营业员  小萍  小华
 月销售件数(件)  150 200 
 月总收入(元)  1250  1400
假设销售每件奖励a元,营业员月基本工资为b元.
①求a、b的值;
①若营业员小萍某月总收入不低于1600元,那么小萍的当月至少要卖出服装多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程(组)和不等式(组)
(1)
2x-1
3
=1-
x
2

(2)
x=3y+2
x+3y=8

(3)解不等式
2x-3
5
x-1
2

(4)解不等式组
2x-6<3x
x+2
5
-
x-1
4
≥0

查看答案和解析>>

科目:初中数学 来源:昌平区二模 题型:解答题

列方程(组)或不等式(组)解应用题:
净朋家政公司要临时招聘室内、室外两种家政员工共150人,室内、室外两种员工每月的保底工资分别为600元和1000元.因工作需要,要求室外员工的人数不可低于室内员工人数的2倍,那么招聘室内员工多少人时,可使此家政公司每月付的保底工资最少最少为多少元?

查看答案和解析>>

同步练习册答案