精英家教网 > 初中数学 > 题目详情
某园艺公司计划投资种植花卉及树木,根据市场调查与预测种植花卉的利润y1(万元)与投入资金x(万元)成正比列关系,如图1所示;种植树木的利润y2(万元)与投入资金x(万元)成二次函数关系,如图2所示.
(1)分别求出利润y1(万元)与y2(万元)关于投入资金x(万元)的函数关系式;
(2)如果该园艺公司以8万元资金投入种植花卉和树木,公司至少能获得多少利润?
精英家教网
分析:(1)可根据图象利用待定系数法求解函数解析式;
(2)根据总利润=树木利润+花卉利润,列出函数关系式,再求函数的最值.
解答:解:(1)由图象知y1=kx,y2=ax2
∵y1=kx经过(1,2),y2=ax2经过(2,2)
∴2=1k,解得:k=2,
2=22a,解得:a=
1
2

即y1=2x,y2=
1
2
x2


(2)设公司投入种植花卉资金x万元,则投入种植树木资金(8-x)万元.
∴公司获得总利润为y=
1
2
(8-x)2+2x=
1
2
(x-6)2+14
(0≤x≤8),
公司至少能获得14万元利润.
点评:此题主要考查了二次函数的应用,第(1)个问题是已知一次函数和二次函数的图象,求函数的解析式,观察两个函数的图象可知,前者是正比例函数,后者是二次函数,顶点是(0,0),利用待定系数法,先设两个函数的解析式,再将P(1,2),Q(2,2)代入相应的解析式求出参数即可;第(2)个问题是已知自变量的取值范围求二次函数的最值,属于二次函数的条件最值问题.这类试题一般先将函数解析式配方,将函数解析式变成顶点形式,找出顶点坐标和对称轴方程,结合自变量的取值范围,画出函数图象(抛物线的一部分),根据抛物线的对称性、开口方向,确定函数的最大(或最小)值,不宜直接用最值公式,这种解题方法体现了数学中的数形结合的思想,它的优点是直观形象,避免死记公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某园艺公司计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1(万元)与投入资金x(万元)成正比例关系,如图1所示;种植花卉的利润y2(万元)与投入资金x(万元)成二次函数关系,如图2所示.
(1)分别求出利润y1(万元)与y2(万元)关于投入资金x(万元)的函数关系式;
(2)如果该园艺公司以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某园艺公司计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1(万元)与投入资金x(万元)成正比例关系,如图1所示;种植花卉的利润y2(万元)与投入资金x(万元)成二次函数关系,如图2所示.
(1)分别求出利润y1(万元)与y2(万元)关于投入资金x(万元)的函数关系式;
(2)如果该园艺公司以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:2010-2011学年河南省三门峡市九年级(上)期末数学试卷(解析版) 题型:解答题

某园艺公司计划投资种植花卉及树木,根据市场调查与预测种植花卉的利润y1(万元)与投入资金x(万元)成正比列关系,如图1所示;种植树木的利润y2(万元)与投入资金x(万元)成二次函数关系,如图2所示.
(1)分别求出利润y1(万元)与y2(万元)关于投入资金x(万元)的函数关系式;
(2)如果该园艺公司以8万元资金投入种植花卉和树木,公司至少能获得多少利润?

查看答案和解析>>

科目:初中数学 来源:北京期末题 题型:解答题

某园艺公司计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1(万元)与投入资金x(万元)成正比例关系,如图1所示;种植花卉的利润y2(万元)与投入资金x(万元)成二次函数关系,如图2所示。
(1)分别求出利润y1(万元)与y2(万元)关于投入资金x(万元)的函数关系式;
(2)如果该园艺公司以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?

查看答案和解析>>

同步练习册答案