精英家教网 > 初中数学 > 题目详情

【题目】如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、AOC.

(1)若∠AOC=20°,AOB=110°,则∠BOC=   °,DOE=   °;

(2)若∠AOC=m°,AOB=n°(n>m),则∠BOC=   °,DOE=   °;

(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.

【答案】(1)90,45;(2)(n﹣m),(n﹣m);(3)DOE=BOC.

【解析】

(1) 依据∠AOC=20°, AOB=110°, 可得∠BOC=110° -20°=90°; 再根据OD、 OE分别平分∠AOB, AOC, 即可得到∠DOE的度数;

(2) 依据∠AOC=, AOB=,可得∠BOC=-= (-); 再根据OD、 OE分别平分∠AOB、 AOC, 可得∠AOD= , LAOE= ,进而得出∠DOE的度数;

(3) 依据OD、 OE分别平分∠AOB、 AOC, 即可得出∠AOD=AOB,AOE=AOC, 进而得到∠DOE=AOD-AOE= (AOB-AOC) =BOC.

解:(1)

∵∠AOC=20°,AOB=110°,

∴∠BOC=110°﹣20°=90°;

OD、OE分别平分∠AOB、AOC,

∴∠AOD=55°,AOE=10°,

∴∠DOE=55°﹣10°=45°;

故答案为:90,45;

(2)∵∠AOC=m°,AOB=n°,

∴∠BOC=n°﹣m°=(n﹣m)°;

OD、OE分别平分∠AOB、AOC,

∴∠AOD=n°,AOE=m°,

∴∠DOE=AOD﹣AOE=(n﹣m)°;

故答案为:(n﹣m),(n﹣m);

(3)DOE=BOC.

证明:∵OD、OE分别平分∠AOB、AOC,

∴∠AOD=AOB,AOE=AOC,

∴∠DOE=AOD﹣AOE=AOB﹣AOC)=BOC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为( ,0)、(3 ,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O的半径为4,OA为半径,CD为弦,OACD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OAP,使AP=OA,连接PC.

(1)求CD的长;

(2)求证:PCO的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于点D,下列四个结论:

①EF=BE+CF;

②∠BOC=90°+∠A;

③点O到△ABC各边的距离相等;

④设OD=m,AE+AF=n,则S△AEF=mn.

其中正确的结论是( )

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.
(1)若BE=8,求⊙O的半径;
(2)若∠DMB=∠D,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将连续的奇数1、3、5、7、9,……排成如下的数表:

(1)十字框中的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?

(2)设十字框中中间的数为a,用含a的式子表示十字框中的其他四个数;

(3)十字框中的5个数的和能等于2018吗?若能,请写出这5个数;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由边长为1的小正三角形组成的网格图,点O和△ABC的顶点都在正三角形的格点上,将△ABC绕点O逆时针旋转120°得到△A′B′C′.

(1)在网格中画出旋转后的△A′B′C′;
(2)求AB边旋转时扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,O是边BC的中点,E是线段AB延长线上一点,过点CCDBE,交线段EO的延长线于点D,连接BD,CE.

(1)求证:CD=BE;

(2)如果∠ABD=2BED,求证:四边形BECD是菱形.

查看答案和解析>>

同步练习册答案