精英家教网 > 初中数学 > 题目详情

【题目】函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索,画函数的图象,经历分析解析式、列表、描点、连线过程得到函数图象如下图所示:

……

-3

-2

-1

0

1

2

3

……

……

6

4

2

0

2

4

6

……

经历同样的过程画函数的图象如下图所示,观察发现:三个函数的图象都是由两条射线组成的轴对称图形:三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.

请直接写出的交点坐标和函数的对称轴;

在所给的平面直角坐标系内画出函数的图象(不列表),并写出函数的一条性质;

结合函数图像,直接写出不等式的取值范围.

【答案】1)交点坐标为(﹣12),对称轴为直线x=﹣2;(2)图像见解析,性质:函数的图象的对称轴为直线x3(答案不唯一);(3

【解析】

1)根据所给图像即可得到答案;

2)画出函数的图象,结合所画图像即可得到相应的图像性质;

3)先画出的函数图像,再通过与联立方程求出交点坐标,结合函数图像即可得到答案.

解:(1)由图像可知:的交点坐标为(﹣12),

函数的对称轴为直线x=﹣2

2)函数的图象如图所示:

性质:函数的图象的对称轴为直线x3(答案不唯一);

3)函数的图像如图所示:

时,

解得

的一个交点坐标为(55),

时,

解得

的另一个交点坐标为(),

∴由图像可知:不等式的解集为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在平行四边形ABCD过点AAEBC垂足为E连接DEF为线段DE上一点AFE=∠B

(1)求证ADF∽△DEC

(2)若AB=8,AD=AF=AE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=3,∠B=50°,点D在BC边上(不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.

(1)当∠BAD=20°时,求∠CDE的度数;

(2)当CD等于多少时,△ABD≌△DCE?为什么?

(3)在点D运动的过程中,△ADE可能是等腰三角形吗?若可能,直接写出∠DAE的度数;若不可能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的方格地面上,标有编号ABC的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.

(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?

(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取AB的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.

(1)该种干果第一次的进价是多少?

(2)超市销售这种干果共盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.

(1)求证:BE是⊙O的切线;

(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG=,DF=2BF,求AH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件50元,售价为每件60元,每天可卖出190件;如果每件商品的售价每上涨1元,则每天少卖10件,设每件商品的售价上涨x元,每天的销售利润为y元.

1)求y关于x的关系式;

2)每件商品的售价定为多少元时,每天的利润恰为1980元?

3)每件商品的售价定为多少元时,每天可获得最大利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,已知AB=4BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,,以此类推,这样连续旋转2016次后,顶点A在整个旋转过程中所经过的路程之和是(  )

A. 2015π B. 3019.5π C. 3018π D. 3024π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A42)、Bn4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

1)求一次函数和反比例函数的解析式;

2)求AOB的面积;

3)观察图象,直接写出不等式kx+b0的解集.

查看答案和解析>>

同步练习册答案