精英家教网 > 初中数学 > 题目详情
22、已知矩形ABCD中,对角线AC、BD相交于点O,E、F是对角线BD上的两点,且BF=DE.
(1)按边分类,△AOB是
等腰
三角形;
(2)猜想线段AE、CF的大小关系,并证明你的猜想.
分析:(1)由于矩形的对角线相等且互相平分,可得OA=OB,因此从边的角度来看,△AOB是等腰三角形.
(2)此题的证法较多,以两种常见的证法为例:由矩形的性质,易得到OA=OC,OB=OC,进而可得到OF=OE,然后:
①通过证△AOE≌△COF来得到AE=CF;
②根据AC、EF互相平分判定四边形AFCE是平行四边形,从而得到AE=CF的结论.
解答:解:(1)等腰;
理由:由于矩形的对角线相等且互相平分,所以OA=OB,即△AOB是等腰三角形.

(2)猜想:AE=CF;
证法一:∵四边形是ABCD矩形,
∴AD∥BC,且AD=BC,
∴∠ADB=∠CBD,
∵DE=BF,
∴△ADE≌△CBF(SAS),
∴AE=CF.
证法二:∵四边形ABCD是矩形,
∴OA=OC,OB=OD,
∵DE=BF,∴OE=OF,
又∠AOE=∠COF,
∴△AOE≌△COF(SAS),
∴AE=CF.
证法三:如图,连接AF、CE,
由四边形ABCD是矩形得OA=OC,OB=OD,
∵DE=BF,∴OE=OF,
∴四边形AECF是平行四边形,
∴AE=CF.
点评:此题主要考查的是矩形的性质以及全等三角形的判定和性质,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知矩形ABCD中,CD=2,AD=3,点P是AD上的一个动点(与A、D不重合),过点P作PE⊥CP交直线AB于点E,设PD=x,AE=y,
(1)写出y与x的函数解析式,并指出自变量的取值范围;
(2)如果△PCD的面积是△AEP面积的4倍,求CE的长;
(3)是否存在点P,使△APE沿PE翻折后,点A落在BC上?证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形ABCD中,AB=4,对角线BD=2AB,且BE平分∠ABD,点P从点D以每秒2个单位沿DB方向向点B运动精英家教网,点Q从点B以每秒1个单位沿BA方向向点A运动,设运动时间为t秒,△BPQ的面积为S.
(1)若t=2时,求证:△DBA∽△PBQ;
(2)求S关于t的函数关系式及S的最大值;
(3)在运动的过程中,△BQM能否成为等腰三角形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形ABCD中,对角线AC、BD交于O,若∠AOB=120°,BD=8cm,则矩形ABCD的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形ABCD中,BC=6,AB=8,延长AD到点E,使AE=15,连接BE交AC于点P.
(1)求AP的长;
(2)若以点A为圆心,AP为半径作⊙A,试判断线段BE与⊙A的位置关系并说明理由;
(3)已知以点A为圆心,r1为半径的动⊙A,使点D在动⊙A的内部,点B在动⊙A的外部.
①求动⊙A的半径r1的取值范围;
②若以点C为圆心,r2为半径的动⊙C与动⊙A相切,求r2的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知矩形ABCD中,CE∥DF.
(1)请问图中有哪几对三角形全等,全部写出来(不另添辅助线);
(2)请任选其中一对全等三角形给予证明.

查看答案和解析>>

同步练习册答案