【题目】如图,Rt△ABC,∠ABC=90°,AB=BC=2,现将Rt△ABC绕点A逆时针旋转30°得到△AED,则图中阴影部分的面积是__________.
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD//BC,AC与BD相交于点O,点E在线段OB上,AE的延长线与BC相交于点F,OD2 = OB·OE.
(1)求证:四边形AFCD是平行四边形;
(2)如果BC=BD,AE·AF=AD·BF,求证:△ABE∽△ACD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市为了答谢顾客发起活动:凡在本超市一次性购物满100元的顾客,当天均可凭购物小票参与一次抽奖活动,奖品是三种瓶装饮品:红酒、啤酒和酸奶,抽奖规则如下:
①如图,是一个材质均匀可自出转动的转盘,转盘被等分成五个扇形区域,各区域上分别写有“红”、“啤”、“酒”、“酸”、“奶”字样;
②参与一次奖活动的顾客可以进行两次“随机转动”,但若转盘停止时指针指向两边区域的边界则可以重新转动转盘,直到指针停到有字的区域才算完成了这次随机转动;
③顾客参与一次抽奖活动,记录两次指针所指区域对应的字,若这两个字和某种奖品名称对应的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;若两字不能组成一种奖品名时,不能获得任何奖品,根据以上规则,回答下列问题:
(1)求只做一次“随机转动”指针指向“酒“字的概率;
(2)请用列表或画树状图的方法求顾客参与一次抽奖活动获得一瓶红酒的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线y=﹣2x2+bx+c过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D,抛物线的顶点为M,其对称轴交AB于点N.
(1)求抛物线的表达式及点M、N的坐标;
(2)是否存在点P,使四边形MNPD为平行四边形?若存在求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+5ax+c(a<0)与x轴负半轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是抛物线的顶点,过D作DH⊥x轴于点H,延长DH交AC于点E,且S△ABD:S△ACB=9:16,
(1)求A、B两点的坐标;
(2)若△DBH与△BEH相似,试求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在矩形中,已知,点为边上一点,满足,动点以的速度沿线段从点移动到点,连接,作,交线段于点,设点移动的时间为,的长度为,与的函数关系如图②所示.
(1)图①中,_______,图②中,_______;
(2)点能否为线段的中点?若可能,求出此时的值,若不可能,请说明理由;
(3)在图①中,连接、,设与交于点,若平分的面积,求此时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.
(1)求点和点的坐标;
(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .
①当时,求关于的函数关系式;
②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;
③直接写出②中的最大值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com