如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:
①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC-AD),⑤四边形
EFGH是菱形.其中正确的个数是【 】
A.1 B.2 C.3 D.4
C
解析考点:三角形中位线定理;菱形的判定与性质.
专题:推理填空题.
分析:根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.
解答:解:∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴EF=CD,FG=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∴①EG⊥FH,正确;
②四边形EFGH是矩形,错误;
③HF平分∠EHG,正确;
④当AD∥BC,如图所示:E,G分别为BD,AC中点,
∴连接CD,延长EG到CD上一点N,
∴EN=BC,GN=AD,
∴EG=(BC-AD),只有AD∥BC是才可以成立,而本题AD与BC很显然不平行,故本小题错误;
⑤四边形EFGH是菱形,正确.
综上所述,①③⑤共3个正确.
故选C.
点评:本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.
科目:初中数学 来源: 题型:
4 | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com