【题目】某商店经销一种销售成本为每千克40元的水产品.根据市场分析,若按每千克50元销售,一个月能销售500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的函数关系式;
(3)当销售单价定为每千克多少元时,月销售利润最大,最大利润是多少?
【答案】(1)月销售量为450(千克),月销售利润为:6750元;(2)y=﹣10x2+1400x﹣40000;(3)当售价是70元时,利润最大为9000元.
【解析】
试题分析:(1)根据“销售单价每涨1元,月销售量就减少10千克”,可知:月销售量=500﹣(销售单价﹣50)×10.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;
(2)方法同(1)只不过将55元换成了x元,求的月销售利润变成了y;
(3)得出(2)的函数关系式后根据函数的性质即可得出函数的最值以及相应的自变量的值.
解:(1)∵当销售单价定为每千克55元时,则销售单价每涨(55﹣50)元,少销售量是(55﹣40)×10千克,
∴月销售量为:500﹣(55﹣50)×10=450(千克),
所以月销售利润为:(55﹣40)×450=6750元;
(2)当销售单价定为每千克x元时,月销售量为:[500﹣(x﹣50)×10]千克.
每千克的销售利润是:(x﹣40)元,
所以月销售利润为:y=(x﹣40)[500﹣(x﹣50)×10]=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000,
∴y与x的函数解析式为:y=﹣10x2+1400x﹣40000;
(3)由(2)的函数可知:y=﹣10(x﹣70)2+9000
因此:当x=70时,ymax=9000元,
即:当售价是70元时,利润最大为9000元.
科目:初中数学 来源: 题型:
【题目】某市百货商场元月1日搞促销活动,购物不超过200元,不给优惠;超过200元,而不足500元,优惠10%;超过500元的,其中500元9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元,问:
(1)此人在两次购物中不打折时商品价值多少钱?
(2)在这次活动中他节省了多少钱?
(3)若此人将这两次的钱合起来购买同样的商品是更节省还是亏损?说明你的理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程( )
A. 98+x=x-3
B. 98-x=x-3
C. (98-x)+3=x
D. (98-x)+3=x-3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com