【题目】天然生物制药公司投资制造某药品,先期投入了部分资金.企划部门根据以往经验发现,生产销售中所获总利润随天数(可以取分数)的变化图象如下,当总利润到达峰值后会逐渐下降,当利润下降到万元时即为止损点,则停止生产
(1)设,求出最大利润是多少?
(2)在(1)的条件下,经公司研究发现如果添加名工人,在工资成本增加的情况下,总利润关系式变为,请研究添加名工人后总利润的最大值,并给出总利润最大的方案中的值及生产天数.
【答案】(1)最大利润为万元;(2)增加人,在第天总利润最大为万元.
【解析】
(1)由图象可知过点(5,0),(45,0),设二次函数的交点式,将点(0,-45)代入即可求得二次函数解析式,再化成顶点式,求解即可;
(2)将(1)中二次项系数代入,再配方,考虑不含值的最大值在m取何值时取得,再得值及最大利润.
(1)由图像可知抛物线经过(5,0),(45,0),(0,-45),
设二次函数的解析式,
当时,,
解得:,
化成顶点式为:,
∵,抛物线开口向下,
当时,取得最大值,
答:最大利润为万元;
(2)由(1)知,
∴总利润关系变为
,
∵设,则为该函数的对称轴,
∵,二次项系数为正,
∴随m的增大而增大,
∴当时,值最大,
∴当时,有最大值,最大值为92万元.
答:增加人,在第天总利润最大为万元.
科目:初中数学 来源: 题型:
【题目】(2017山东日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:
①抛物线过原点;
②4a+b+c=0;
③a﹣b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
其中结论正确的是( )
A. ①②③ B. ③④⑤ C. ①②④ D. ①④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y1=ax2+bx+c(a,b,c为常数)的图象如图所示,若y1+y2=2,则下列关于函数y2的图象与性质描述正确的是:( )
A.函数y2的图象开口向上
B.函数y2的图象与x轴没有公共点
C.当x>2时,y2随x的增大而减小
D.当x=1时,函数y2的值小于0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC的AC,BC边上各取一点P,Q,使AP=CQ,AQ,BP相交于点O.若BO=6,PO=2,则AP的长,AO的长分别为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形ABCD中,E为BC边上一点,连接AE,作AE的垂直平分线交AB于G,交CD于F,若BG=2BE,则DF:CF的长为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半圆的半径OC=2,线段BC与CD是半圆的两条弦,BC=CD,延长CD交直径BA的延长线于点E,若AE=2,则弦BD的长为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,与轴交于点.
(1)求抛物线的解析式;
(2)如图1,抛物线的对称轴交抛物线于点,在轴上是否存在点,使得的周长最小?若存在,求出点坐标;若不存在,请说明理由;
(3)如图2,点为直线上方抛物线上的动点,于点,求线段的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com