精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0), (2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.

(1)求双曲线的解析式;

(2)求四边形ODBE的面积.

【答案】(1)y=;(2)12.

【解析】(1)作BM⊥x轴于M,作BN⊥x轴于N,利用点A,B的坐标得到BC=OM=5,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;

(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD进行计算.

解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,

∵点A,B的坐标分别为(5,0),(2,6),

∴BC=OM=2,BM=OC=6,AM=3,

∵DN∥BM,

∴△ADN∽△ABM,

==,即==

∴DN=2,AN=1,

∴ON=OA﹣AN=4,

∴D点坐标为(4,2),

把D(4,2)代入y=得k=2×4=8,

∴反比例函数解析式为y=

(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD

=×(2+5)×6﹣×|8|﹣×5×2

=12.

“点睛”本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读理解:

我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.

1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形是 

猜想证明:

2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1S2 之间的数量关系,并说明理由;

拓展探究:

3)如图2,在矩形ABCD中,EAD边上的一点,且AB2=AEAD,这个矩形发生变形后为平行四边形A1B1C1D1E1E的对应点,连接B1E1B1D1,若矩形ABCD的面积为4 m0),平行四边形A1B1C1D1的面积为2m0),试求∠A1E1B1+A1D1B1的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】端午节期间,质监部门要对市场上粽子质量情况进行调查,适合采用的调查方式是 .(填“全面调查”或“抽样调查”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,把点A(x,2)向上平移3个单位长度,再向右平移2个单位长度得到点B(-3,y),则xy分别为(  )

A. -6,-4 B. -1,5 C. -5,3 D. -5,5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:

14a3b-16ab3

2)(x2+2x2-2x+42

3)(x-22+10x-2+25

4ax2-11ax-12a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列因式分解正确的是(  )

A. x2﹣y2=(x﹣y)2 B. xy﹣x=x(y﹣1)

C. a2+a+1=(a+1)2 D. 2x+y=2(x+y)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABx轴交于点A10),与y轴交于点B0﹣2).

1)求直线AB的解析式;

2)若直线AB上的点C在第一象限,且SBOC=2,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点ABC的坐标分别为(02)、(-10)、(40).P是线段BC上的一动点(点P与点BC不重合),假设p的横坐标是t.过点P的直线与直线yx平行且与AC相交于点Q.设QPC关于直线PQ的对称的图形与四边形ABPQ重叠部分的面积为S

C关于直线PQ的对称点C的坐标为________

ABC是什么三角形?为什么?

3St的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】坐标平面上的点P2,﹣1)向上平移2个单位,再向左平移1个单位后,点P的坐标变为(  )

A.21B.(﹣21C.11D.4,﹣2

查看答案和解析>>

同步练习册答案