【题目】把一张长方形纸片按如图方式折叠,使顶点和点重合,折痕为.若,,
(1)求的长;
(2)求重叠部分的面积.
【答案】(1)5;(2)10.
【解析】
(1)根据折叠的性质知:BF=DF,设DF=x,用x表示出FC,在Rt△DCF中,利用勾股定理可求得DF的长;
(2)作FH⊥AD于点H,求得FH,由折叠的性质和平行线的性质证得∠EFD=∠DEF,得出DE=DF,进一步利用三角形的面积计算公式即可求解.
解:(1)设DF=x,由折叠可知BF=DF=x,
∴FC=BC-BF=8-x,
∵四边形ABCD为长方形,
∴DC=AB=4,∠C=90°,
在Rt△DCF中,DF2=DC2+FC2,
∴x2=42+(8-x)2,解得x=5,
∴DF=5;
(2)作FH⊥AD于点H,则FH=AB=4,
由折叠可知,∠EFB=∠EFD,
∵AD∥BC,∴∠DEF=∠EFB,∴∠EFD=∠DEF,
∴ED=DF=5,
∴S△DEF=EDFH=×5×4=10.
科目:初中数学 来源: 题型:
【题目】为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.
(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;
(2)求出抽到B队和C队参加交流活动的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.
①请你再选择一个类似的部分试一试,看看是否符合这个规律;
②请你利用整式的运算对以上的规律加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应我市创建“全国文明城市”的号召,我区某校举办了一次“秀美巴中,绿色家园”主题演讲比赛,满分分,得分均为整数,成绩大于等于分为合格,大于等于分为优秀,这次演讲比赛中甲、乙两组学生(各名学生)成绩分布的条形统计图如下图:
(1)补充完成下列的成绩统计分析表:
组别 | 平均分 | 中位数 | 众数 | 方差 | 合格率 | 优秀率 |
甲 | ||||||
乙 |
(2)小王同学说:“这次演讲赛我得了分,在我们小组中排名属中游略偏上!”观察上表可知,小王是________组的学生;(填“甲”或“乙”)
(3)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线与轴负半轴、轴正半轴分别交于两点,的长度分别为和,且满足.
(1)是________三角形.
(2)如图②,正比例函数的图象与直线交于点,过两点分别作于,于,若,,求的长.
(3)如图③,为上一动点,以为斜边作等腰直角,为的中点,连,试问:线段是否存在某种确定的数量关系和位置关系?写出你的结论并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
(1)求日均销售量p(桶)与销售单价x(元)的函数关系;
(2)若该经营部希望日均获利1350元,那么销售单价是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:a、b、c均为非零实数,且a>b>c,关于x的一元二次方程 (a≠0)其中一个实数根为2。
(1)填空:4a+2b+c 0,a 0,c 0(填“>”,“<”或“=”);
(2)若关于x的一元二次方程(a≠0)的两个实数根,满足一个根为另一个根的2倍,我们就称这样的方程为“倍根方程”,若原方程是倍根方程,则求a、c之间的关系。
(3)若a=1时,设方程的另一根为m(m≠2),在两根之间(不包含两根)的所有整数的绝对值之和是7,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com