精英家教网 > 初中数学 > 题目详情
16.如图(1),在矩形ABCD中,AB=4,BC=3,点E是射线CD上的一个动点,把△BCE沿BE折叠,点C的对应点为F.
(1)若点F刚好落在线段AD的垂直平分线上时,求线段CE的长;
(2)若点F刚好落在线段AB的垂直平分线上时,求线段CE的长;
(3)当射线AF交线段CD于点G时,请直接写出CG的最大值4-$\sqrt{7}$.

分析 (1)如图1中,MN是线段AD的中垂线,作FH⊥CD于H.设CE=EF=x,在Rt△EFH中,根据EF2=FH2+HE2,构建方程即可解决问题.
(2)如图2中,MN是线段AB的中垂线,设EF=CE=x.在Rt△EFN中,根据EF2=FN2+NE2,构建方程即可解决问题.
(3)欲求CG的最大值,只要求出DG的最小值即可,由DG=AD•tan∠GAD,推出∠GAD最小时,DG的值最小,由BF=BC,BF是定值,推出当BF⊥AG时,∠BAF的值最大,即∠DAG的值最小,当BF⊥AG时,易知点E与点G共点,设CG=GF=x,在Rt△ADE中,根据AD2+DG2=AG2,构建方程即可解决问题.

解答 解:(1)如图1中,MN是线段AD的中垂线,作FH⊥CD于H.

在Rt△BFM中,∵BF=BC=3,BM=$\frac{3}{2}$,
∴FM=CH=$\sqrt{B{F}^{2}-B{M}^{2}}$=$\frac{3\sqrt{3}}{2}$,设CE=EF=x,
在Rt△EFH中,∵EF2=FH2+HE2
∴x2=($\frac{3}{2}$)2+($\frac{3\sqrt{3}}{2}$-x)2
∴x=$\sqrt{3}$,
∴CE=$\sqrt{3}$.

(2)如图2中,MN是线段AB的中垂线,设EF=CE=x.

在Rt△BFM中,∵∠BMF=90°,BM=2,BF=BC=3,
∴MF=$\sqrt{B{F}^{2}-B{M}^{2}}$=$\sqrt{5}$,
∵MN=BC=3,
∴FN=3-$\sqrt{5}$,EN=2-x,
在Rt△EFN中,∵EF2=FN2+NE2
∴x2=(3-$\sqrt{5}$)2+(2-x)2
∴x=$\frac{9-3\sqrt{5}}{2}$.

(3)如图3中,

欲求CG的最大值,只要求出DG的最小值即可,
∵DG=AD•tan∠GAD,
∴∠GAD最小时,DG的值最小,
∵BF=BC,BF是定值,
∴当BF⊥AG时,∠BAF的值最大,即∠DAG的值最小,
当BF⊥AG时,易知点E与点G共点,
设CG=GF=x,
在Rt△ABF中,∵∠AFB=90°,AB=4,BF=BC=3,
∴AF=$\sqrt{{4}^{2}-{3}^{2}}$=$\sqrt{7}$,
在Rt△ADE中,∵AD2+DG2=AG2
∴32+(4-x)2=($\sqrt{7}$+x)2
∴x=4-$\sqrt{7}$.
∴CG的最大值为4-$\sqrt{7}$,
故答案为4-$\sqrt{7}$.

点评 本题考查四边形综合题、翻折变换、矩形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用构建方程的思想思考问题,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(6,6),O(0,0),B(8,0).点M是OB边上异于O,B的一动点,MN∥AB交OA于点N,点P是AB边上任意点,连接AM,PM,PN,BN.设点M的坐标是(t,0),△PMN的面积为S.
(1)求直线AB的表达式;
(2)当点M的坐标为(2,0)时,求点N的坐标;
(3)求S关于t的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.随着“足球进校园”工作的推进,全国中小学生的身体素质普遍增强.某校为了准确把握学生在“足球进校园”活动开展后的体质情况,从全校学生中随机抽取部分学生进行身体素质测试,测试的结果分为A、B、C、D、E五个等级,并根据样本绘制了两幅统计图,请根据统计图的信息回答下列问题:
(1)本次抽样调查基抽取了学生多少人?
(2)在本次被调查的学生中,求测试结果为D等级的学生人数,并补全条形统计图.
(3)若该学校共有学生1200人,请你根据抽样调查的结果估计该学校全体学生中身体素质测试结果为A等级的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号分组频数
6≤m<72
7≤m<87
8≤m<9a
9≤m≤102
(1)求a的值;
(2)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某学校为了推进球类运动的普及,成立了多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整).请你根据图中提供的信息,解答下列问题:

(1)求扇形统计图中,“乒乓球”所对应的扇形的圆心角为144度;
(2)请将条形统计图和扇形统计图补充完整;
(3)若该学校共有学生1600人,根据以上数据分析,试估计选择排球运动的同学约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,一次函数y=-x+3的图象与反比例y=$\frac{k}{x}$(k为常数,且k≠0)的图象交于A(1,a),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知a、b、c满足$\sqrt{a+b-4}$+|a-c+1|=$\sqrt{b-c}$+$\sqrt{c-b}$,求a+b+c的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:
(1)(-3)2-$\sqrt{4}$+($\frac{1}{2}$)-1
(2)(x+1)2-2(x-2).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,已知DE∥BC,DC平分∠EDB,∠ADE=80°,则∠BCD=50°.

查看答案和解析>>

同步练习册答案