精英家教网 > 初中数学 > 题目详情
18.如图所示,在矩形ABCD中,对角线AC,BD相交于点O.
(1)过点O作0E⊥BC于点E,连接DE交OC于点F,作FG⊥BC于G点,则△ABC与△FGC是位似图形吗?若是,请说出位似中心,并求出位似比;若不是,请说明理由.
(2)连接DG交AC于点H,作HI⊥BC于I,试确定$\frac{CI}{BC}$的值.

分析 (1)根据相似三角形的判定定理证明△ABC∽△FGC,根据位似变换的概念和位似中心的概念解答即可,根据相似三角形的性质求出两个三角形的相似比,得到位似比;
(2)根据相似三角形的性质进行计算即可.

解答 解:(1)∵FG⊥BC,AB⊥BC,
∴FG∥AB,
∴△ABC∽△FGC,
△ABC与△FGC对应顶点的连线相交于一点,对应边互相平行或重合,
∴△ABC与△FGC是位似图形,位似中心是点C,
∵BO=OD,OE∥CD,
∴$\frac{DC}{OE}$=$\frac{BD}{OB}$=2
∴$\frac{CF}{FO}$=$\frac{DC}{OE}$=2,
∴$\frac{CG}{CE}$=$\frac{2}{3}$,
∴$\frac{CG}{CB}$=$\frac{1}{3}$,
则△ABC与△FGC的位似比为3;
(2)由(1)得,$\frac{EG}{EC}$=$\frac{1}{3}$,FG∥CD,
∴$\frac{FG}{CD}$=$\frac{EG}{EC}$=$\frac{1}{3}$,
∴$\frac{CI}{CG}$=$\frac{CH}{CF}$=$\frac{3}{4}$,又$\frac{CG}{CE}$=$\frac{2}{3}$,
∴$\frac{CI}{CE}$=$\frac{1}{2}$,
∴$\frac{CI}{BC}$=$\frac{1}{4}$.

点评 本题考查的是位似变换的概念、位似比的计算,相似三角形的判定和性质,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知关于x的方程(a2+b2+c2)x2+2(a+b+c)x+3=0有两个相等的实数根,且a、b、c为△ABC的三条边,试判别△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示,∠BAB1=∠CAC1=90°,AB=AB1,AC=AC1,B1在CC1上.
求证:(1)BC=B1C1          
(2)BC⊥CC1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.绝对值大于2.1而小于4.9的所有整数有-4、-3、3、4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图所示,已知AD是Rt△ABC的斜边BC上的高,E为AC上一点,连接BE交AD于点F,若AE=AF,求证:BE平分∠ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了20次测试,测试成绩如下表(单位:环):
成绩(环)78910
3次8次5次4次
4次6次6次4次
(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;
(2)你认为推荐谁参加省比赛更合适,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知抛物线y=-x2+2(m+1)x+m+3与x轴交于两点A、B(点A在x轴的正半轴上,点B在x轴的负半轴上).与y轴交于点C.
(1)求m的取值范围;
(2)如果|OA|:|OB|=3:1,在该抛物线对称轴右边图象上求一点P的坐标,使得∠PCO=∠BCO.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,直线y=kx+2与直线y=$\frac{1}{3}$x相交于点A(3,1),与x轴交于点B.
(1)求B点坐标;
(2)根据图象写出不等式组0<kx+2<$\frac{1}{3}$x的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-$\frac{1}{5}$x2+$\frac{8}{5}$x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离.
(1)飞行的水平距离是多少时,球最高?
(2)球从飞出到落地的水平距离是多少?

查看答案和解析>>

同步练习册答案