16£®Èçͼ£¬ËıßÐÎABDCµÄËĸö¶¥µã¶¼ÔÚÕý·½ÐÎÍø¸ñÖеÄСÕý·½Ðζ¥µãÉÏ£¬Ã¿¸öСÕý·½Ðεı߳¤Îª1£®
£¨1£©½«ËıßÐÎABDCÏÈÏò×óƽÒÆ1¸öµ¥Î»£¬ÔÙÏòÉÏƽÒÆ4¸öµ¥Î»µÃµ½ËıßÐÎA1B1D1C1£¬ÆäÖж¥µãA£¬B£¬D£¬CµÄ¶ÔÓ¦µã·Ö±ðΪµãA1¡¢B1¡¢D1¡¢C1£¬ÇëÔÚÍø¸ñÖл­³öËıßÐÎA1B1D1C1£»
£¨2£©½«ËıßÐÎABDCÑØ×ÅÖ±ÏßMN·­ÕÛºóµÃµ½ËıßÐÎA2B2DC2£¬Á¬½ÓD1A2£¬²¢Ö±½Óд³öÏ߶ÎD1A2µÄ³¤¶È£®

·ÖÎö £¨1£©·Ö±ð×÷³öµãA¡¢B¡¢D¡¢CÏò×óƽÒÆ1¸öµ¥Î»£¬ÔÙÏòÉÏƽÒÆ4¸öµ¥Î»µÃµ½µÄ¶ÔÓ¦µã£¬Ë³´ÎÁ¬½Ó¼´¿ÉµÃ£»
£¨2£©·Ö±ð×÷³öµãA¡¢B¡¢CÑØ×ÅÖ±ÏßMN·­ÕÛºóµÃµ½µÄ¶ÔÓ¦µã£¬Ë³´ÎÁ¬½Ó¼´¿ÉµÃ£¬ÔÙ¸ù¾Ý¹´¹É¶¨Àí¿ÉµÃD1A2µÄ³¤¶È£®

½â´ð ½â£º£¨1£©Èçͼ£¬ËıßÐÎA1B1D1C1¼´ÎªËùÇó£»

£¨2£©Èçͼ£¬ËıßÐÎA2B2DC2¼´ÎªËùÇó£¬D1A2=$\sqrt{{6}^{2}+{4}^{2}}$=2$\sqrt{13}$£®

µãÆÀ ±¾Ì⿼²éµÄÊÇ×÷ͼ-ƽÒƱ任ºÍÖá¶Ô³Æ±ä»»£¬Êì֪ͼÐÎƽÒƲ»±äÐÔµÄÐÔÖʺÍÖá¶Ô³ÆÐÔÖÊÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Æ½ÐÐËıßÐÎÊÇÖÐÐĶԳÆͼÐΣ®£¨¡°Öá¶Ô³ÆͼÐΡ±»ò¡°ÖÐÐĶԳÆͼÐΡ±£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=-$\frac{1}{3}$x2+bx+6ÓëxÖá½»ÓÚµãA£¨-6£¬0£©ºÍµãB£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Ð´³ö¶¥µãµÄ×ø±ê£¬²¢ÇóABµÄ³¤£»
£¨3£©ÈôµãA£¬O£¬C¾ùÔÚ¡ÑDÉÏ£¬Çëд³öµãDµÄ×ø±ê£¬Á¬½ÓBC£¬²¢ÅжÏÖ±ÏßBCÓë¡ÑDµÄλÖùØϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®£¨1£©¼ÆË㣺$\frac{3}{2}$$\sqrt{5}$-£¨$\frac{5}{4}$$\sqrt{5}$-$\frac{2}{3}$$\sqrt{5}$£©£®
£¨2£©¼ÆË㣺$\sqrt{15}$¡Â$\sqrt{3}$¡Á£¨$\sqrt{2}$£©3£®
£¨3£©¼ÆË㣺£¨3-4$\sqrt{3}$£©¡Â2$\sqrt{3}$£®
£¨4£©¼ÆË㣺£¨$\sqrt{7}$+2£©2-£¨$\sqrt{7}$-2£©2£®
£¨5£©¼ÆË㣺$\sqrt{£¨2\sqrt{3}-3£©^{2}}$+$\root{4}{{2}^{-4}}$-£¨$\frac{1}{\sqrt{3}-1}$£©-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2-6ax£¨a£¼0£©ÓëxÖáÕý°ëÖá½»ÓÚµãA£¬¾ØÐÎBCDEµÄ¶¥µãB¡¢E¾ùÔÚxÖáÉÏ£¬C¡¢D¾ùÔÚÅ×ÎïÏßÉÏ£¬ÇÒµãBµÄ×ø±êΪ£¨1£¬0£©£¬Å×ÎïÏߵĶ¥µãΪF£¬ÒÔCFΪ±ß×÷Õý·½ÐÎCFMN£¬ÒÔCDΪµ×±ßÏòÉÏ×÷µÈÑüÖ±½ÇÈý½ÇÐÎCDH£¬Á¬½áFH£®
£¨1£©µ±µãFÔÚµãHÉÏ·½Ê±£¬ÇóFHµÄ³¤£®£¨Óú¬aµÄ´úÊýʽ±íʾ£©
£¨2£©µ±¡÷FCDΪµÈ±ßÈý½ÇÐÎʱ£¬ÇóaµÄÖµ£®
£¨3£©µ±µãNÂäÔÚÅ×ÎïÏߵĶԳÆÖáÉÏʱ£¬Çó´ËÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽ£®
£¨4£©Ö±½Óд³öËùÓÐʹÕý·½ÐÎCFMNÓÐÁ½¸ö¶¥µãͬʱÂäÔÚ¾ØÐÎBCDE±ßÉϵÄaÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®£¨1£©Òòʽ·Ö½â£º2x3-5x2+3x=x£¨x-1£©£¨2x-3£©
£¨2£©Òòʽ·Ö½â£º4a2+4a-15=£¨2a-3£©£¨2a+5£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Æ½ÐÐËıßÐÎABCDÖУ¬¹ýµãD×÷DE¡ÍABÓÚµãE£¬µãFÔÚCDÉÏ£¬CF=AE£¬Á¬½ÓBF£¬AF£®
£¨1£©ÇóÖ¤£ºËıßÐÎBFDEÊǾØÐΣ»
£¨2£©ÈôAFƽ·Ö¡ÏBAD£¬ÇÒAE=3£¬DE=4£¬Çó¾ØÐÎBFDEµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬OÊÇ×ø±êÔ­µã£¬¹ýµãA£¨-1£¬0£©µÄÅ×ÎïÏßy=x2-bx-3ÓëxÖáµÄÁíÒ»¸ö½»µãΪB£¬ÓëyÖá½»ÓÚµãC£¬Æ䶥µãΪDµã
£¨1£©ÇóbµÄÖµ£»
£¨2£©Á¬½ÓBD£¬CD£¬Æ½ÃæÄÚÓÐÒ»µãQ£¨m£¬n£©£¬µ±ËıßÐÎBQCDÊÇƽÐÐËıßÐÎʱ£¬Çóm£¬nµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¼ÆË㣺$\frac{x}{x-1}$+$\frac{2x}{3x-3}$-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸