精英家教网 > 初中数学 > 题目详情
2.如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有5个.

分析 首先与∠BCE相等的角有对顶角∠DCA.由于AB是⊙O的直径,可得∠ADB=90°;已知AD=DE,根据垂径定理可知OD⊥AE;根据等角余角相等,可得出∠DCA=∠ADO=∠DAO;易证得△OAD≌△OED,因此∠DAB=∠ADO=∠ODE=∠DEO;因此与∠BCE相等的角有5个:∠DCA、∠OAD、∠ODA、∠ODE、∠OED.

解答 解:∵在△ADO和△DOE中$\left\{\begin{array}{l}{AD=DE}\\{AO=DO}\\{DO=EO}\end{array}\right.$,
∴△OAD≌△OED(SSS),
∴∠DAB=∠EDO,∠ADO=∠DEO,
∵AO=DO,
∴∠DAB=∠ADO,
∴∠DAB=∠ADO=∠ODE=∠DEO;
∵AB是⊙O的直径,
∴∠ADB=90°,∠AEB=90°,
∵AD=DE,
∴∠ABD=∠DBE,
∴∠DAB=90°-∠ABD,∠BCE=90°-∠DBE,
∴∠DAB=∠BCE,
∴∠DCA=∠DAB=∠ADO=∠ODE=∠DEO,
则与∠ECB相等的角有5个.
故答案为:5.

点评 此题主要考查圆周角定理,以及等腰三角形的性质,关键是掌握同弧所对的圆周角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.小明是个爱动脑筋的孩子,他在学完与圆有关的角圆周角、圆心角后,意犹未尽,又查阅到了与圆有关的另一种角------弦切角.请同学们先仔细阅读下面的材料,再完成后面的问题.
材料:顶点在圆上,一边与圆相交,另一边与圆相切的角叫做弦切角.如图1,弧$\widehat{AmB}$是弦切角∠PAB所夹的弧,他发现弦切角与它所夹的弧所对的圆周角有关系.

问题1:如图2,直线DB切⊙O于点A,∠PCA是圆周角,当圆心O位于边AC上时,
求证:∠PAD=∠PCA,请你写出这个证明过程.
问题拓展:
如果圆心O不在∠PCA的边上,∠PAD=∠PCA还成立吗?如图3,当圆心O在∠PCA的内部时,小明证明了这个结论是成立的.他的思路是:作直线AE,联结PE,由问题1的结论可知∠PAD=∠PEA,而∠PCA=∠PEA,从而证明∠PAD=∠PC.
问题2:如图4,当圆心O在∠PCA的外部时,∠PAD=∠PCA仍然成立.请你仿照小明的思路证明这个结论.
运用:如图5,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.(提示:可以直接使用本题中的结论)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果如下:用1个单位量的水可洗掉蔬菜残留农药量的$\frac{1}{2}$,用水越多洗掉的农药量也越多,但总有农药残留在蔬菜上,设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数y=$\frac{1}{{x}^{2}+c}$(x≥0)
(1)试确定c的值,并写出两条上述函数的性质;
(2)现有a(a>0)单位量的水,可以一次清洗,也可以把水平均分成2份后清洗两次,试用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=150°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,AB=6.设AC=x,BC=y,则代数式(x+y)2-3xy+2的值是26.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,数轴上A、B两点,表示的数分别为-1和$\sqrt{3}$,点B关于点A的对称点为C,点C所表示的实数是-2-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.二次函数y=(2x+1)2-2的图象的对称轴是x=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.△ABC中,∠A<∠B<∠C,∠A=16°;若一刀能把△ABC分成两个等腰三角形,则∠C的度数=90°或123°或116°或132°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易.舌尖上的浪费让人触目惊心,据统计,中国每年浪费食物总量折合成粮食约5100000000千克,这个数据用科学记数法表示5.1×109

查看答案和解析>>

同步练习册答案