精英家教网 > 初中数学 > 题目详情
精英家教网已知△ABC中,AB=AC=m,∠ABC=72°,BB1平分∠ABC交AC于B1,过B1作B1B2∥BC交AB于B2,作B2B3平分∠AB2B1,交AC于B3,过B3作B3B4∥BC,交AB于B4…依次进行下去,则B9B10线段的长度用含有m的代数式可以表示为
 
分析:因为过B1作B1B2∥BC交AB于B2,所以△AB2B1∽△ABC,相似三角形的对应边对应成比例,因为AB=AC=m,∠ABC=72°,BB1平分∠ABC交AC于B1,所以△BCB1和△B2B1B是等腰三角形,根据余弦定理,可求出BC的长,根据相似三角形对应线段成比例,可求出B2B1的长,进而同理可求出B9B10的长,设B2B1是x,则B2B是x.
解答:解:∵AB=AC=m,∠ABC=72°,BB1平分∠ABC交AC于B1
∴△BCB1和△B2B1B是等腰三角形,
∵过B1作B1B2∥BC交AB于B2
AB2
AB
=
B2B1
BC

∵BC=AB2+AC2-2AB•ACcos36°,
∴BC=
3-
5
2
m,
设B2B1是x,则B2B是x.
m-x
m
=
x
3-
5
2
m

∴x=
3-
5
2
 
m2
m+
3-
5
2
m

即:x=
3-
5
2
m
1+
3-
5
2

同理可求出B9B10=(
5
-1
2
)
6
m.
故答案为:(
5
-1
2
)
6
m.
点评:本题考查相似三角形的判定和性质,关键是知道相似三角形的对应线段成比例,以及余弦定理求出BC的长,找出规律求出值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分线的定义).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案