精英家教网 > 初中数学 > 题目详情

【题目】今年下半年以来,猪肉价格不断上涨,主要是由非洲猪瘟疫情导致.非洲猪瘟疫情发病急,蔓延速度快.某养猪场第一天发现3头生猪发病,两天后发现共有192头生猪发病.

1)求每头发病生猪平均每天传染多少头生猪?

2)若疫情得不到有效控制,按照这样的传染速度,3天后生猪发病头数会超过1500头吗?

【答案】17头;(2)会超过1500

【解析】

1)设每头发病生猪平均每天传染x头生猪,根据“第一天发现3头生猪发病,两天后发现共有192头生猪发病”,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
2)根据3天后生猪发病头数=2天后生猪发病头数×(1+7),即可求出3天后生猪发病头数,再将其与1500进行比较即可得出结论.

解:(1)设每头发病生猪平均每天传染头生猪,

依题意,得

解得: (不合题意,舍去).

答:每头发病生猪平均每天传染7头生猪.

2(头

答:若疫情得不到有效控制,3天后生猪发病头数会超过1500头.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线相交于两点,且抛物线经过点

1)求抛物线的解析式.

2)点是抛物线上的一个动点(不与点重合),过点作直线轴于点,交直线于点.当时,求点坐标;

3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面高为8米的点处要安装两盏警示灯,则这两盏灯的水平距离____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 在等边△ABC, D, E, F分别为边AB, BC, CA上的点, 且满足∠DEF=60°

1)求证:

2)若DEBCDE=EF, 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙M的半径为4,圆心M的坐标为(68),点P是⊙M上的任意一点,PAPB,且PAPBx轴分别交于AB两点,若点A、点B关于原点O对称,则AB的最小值为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班数学兴趣小组对函数的图像和性质进行了探究,探究过程如下,请补充完整.

1)自变量的取值范围是全体实数,的几组对应值列表如下:

其中,________________

2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分;

3)观察函数图像,写出两条函数的性质;

4)进一步探究函数图像发现:

①方程______个实数根;

②函数图像与直线_______个交点,所以对应方程_____个实数根;

③关于的方程个实数根,的取值范围是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+ca0)的顶点为M,直线ym与抛物线交于点AB,若AMB为等腰直角三角形,我们把抛物线上AB两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.

1)由定义知,取AB中点N,连结MNMNAB的关系是_____

2)抛物线y对应的准蝶形必经过Bmm),则m_____,对应的碟宽AB_____

3)抛物线yax24aa0)对应的碟宽在x 轴上,且AB6

①求抛物线的解析式;

②在此抛物线的对称轴上是否有这样的点Pxpyp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂生产一种火爆的网红电子产品,每件产品成本 16 元,工厂将该产品进行网络批发,批发单价 y(元)与一次性批发量 x(件)(x为正整数)之间满 足如图所示的函数关系.

1)直接写出 y x之间所满足的函数关系式,并写出自变量 x的取值范围;

2)若一次性批发量不低于 20 且不超过 60 件时,求获得的利润 w x 的函数 关系式,同时当批发量为多少件时,工厂获利最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面内,给定不在同一直线上的点ABC,如图所示.点O到点ABC的距离均等于aa为常数),到点O的距离等于a的所有点组成图形G的平分线交图形G于点D,连接ADCD

1)求证:AD=CD

2)过点DDEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.

查看答案和解析>>

同步练习册答案