精英家教网 > 初中数学 > 题目详情

已知Rt△ABC中,∠C=90°,AC="3" , BC=4,则△ABC的内切圆的半径是         

1

解析试题分析:Rt△ABC中,∠C=90°,AC="3" , BC=4,由勾股定理得AB=5;△ABC的内切圆是圆O,如图所示,G、E、F分别是内切圆与Rt△ABC三边BC、AC、AB的切点,连接OG、OE、OF,设AF=x,根据三角形内切圆的性质那么AE=x;BF=5-x,因此BG=5-x,因为BC=4,所以CG=x-1,所以CE=x-1,因为AC=3,所以CE+AE=3,解得x=2,所以CE="2-1=1," Rt△ABC中,∠C=90,根据三角形内切圆的性质,OC是∠C的角平分线,OE⊥AC,所以,所以OE=CE=1,OE是三角形内切圆的半径,所以△ABC的内切圆的半径是1

考点:内切圆
点评:本题考查内切圆,学生解答本题的关键是掌握三角形内切圆的性质,熟悉三角形内切圆的性质,熟悉勾股定理

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是(  )
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延长线于E,BA、CE延长线相交于F点.
求证:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,两直角边AC、BC的长是关于x的方程x2-(m+5)x+6m=0的两个实数根.求m的值及AC、BC的长(BC>AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是
72
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.

查看答案和解析>>

同步练习册答案