精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,反比例函数y=
k
x
的图象经过点A(1,4)、B(m,n).
(1)求代数式mn的值;
(2)若二次函数y=(x-1)2的图象经过点B,求代数式m3n-2m2n+3mn-4n的值;
(3)若反比例函数y=
k
x
的图象与二次函数y=a(x-1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.
考点:反比例函数综合题,代数式求值,反比例函数与一次函数的交点问题,二次函数的性质
专题:综合题,数形结合,分类讨论
分析:(1)只需将点A、B的坐标代入反比例函数的解析式就可解决问题;
(2)将点B的坐标代入y=(x-1)2得到n=m2-2m+1,先将代数式变形为mm(m2-2m+1)+3mm-4n,然后只需将m2-2m+1用n代替,即可解决问题;
(3)可先求出直线y=x与反比例函数y=
4
x
交点C和D的坐标,然后分a>0和a<0两种情况讨论,先求出二次函数的图象经过点D或C时对应的a的值,再结合图象,利用二次函数的性质(|a|越大,抛物线的开口越小)就可解决问题.
解答:解:(1)∵反比例函数y=
k
x
的图象经过点A(1,4)、B(m,n),
∴k=mn=1×4=4,
即代数式mn的值为4;

(2)∵二次函数y=(x-1)2的图象经过点B,
∴n=(m-1)2=m2-2m+1,
∴m3n-2m2n+3mn-4n=m3n-2m2n+mn+3mm-4n
=mm(m2-2m+1)+3mm-4n
=4n+3×4-4n
=12,
即代数式m3n-2m2n+3mn-4n的值为12;

(3)设直线y=x与反比例函数y=
4
x
交点分别为C、D,
y=x
y=
4
x
,得:
x1=-2
y1=-2
x2=2
y2=2

∴点C(-2,-2),点D(2,2).
①若a>0,如图1,

当抛物线y=a(x-1)2经过点D时,
有a(2-1)2=2,
解得:a=2.
∵|a|越大,抛物线y=a(x-1)2的开口越小,
∴结合图象可得:满足条件的a的范围是0<a<2;
②若a<0,如图2,

当抛物线y=a(x-1)2经过点C时,
有a(-2-1)2=-2,
解得:a=-
2
9

∵|a|越大,抛物线y=a(x-1)2的开口越小,
∴结合图象可得:满足条件的a的范围是a<-
2
9

综上所述:满足条件的a的范围是0<a<2或a<-
2
9
点评:本题主要考查了反比例函数图象上点的坐标特征、求代数式的值、求直线与反比例函数图象的交点坐标、二次函数的性质等知识,另外还重点对整体思想、数形结合的思想、分类讨论的思想进行了考查,运用整体思想是解决第(2)小题的关键,考虑临界位置并运用数形结合及分类讨论的思想是解决第(3)小题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知2x2+5x=-1,则2x3+11x2+16x+4的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若2ab2m+3n与a2n-3b8的和是一个单项式,求m与n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

小米的妈妈到银行存入2万元人民币,存期1年,年利率为1.98%,到期应缴纳所获利息的20%的利息税,则小米的妈妈存款到期交利息税后共得
 
元.

查看答案和解析>>

科目:初中数学 来源: 题型:

某多边形除一个内角外,其他各内角之和为2180°,则此多边形为
 
 边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

4-x
(x+1)2+1
的值为正数的条件是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法正确的是(  )
A、所有的有理数都能用数轴上的点表示
B、3与-
1
3
互为倒数
C、两个有理数的和一定大于每个加数
D、符号不同的两个数互为相反数

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:
(1)5x2-26x+26=0.
(2)2x2-7x-2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,D,E,F分别是AB,BC,AC的中点,若△ABC的周长为20cm,则△DEF的周长为
 

查看答案和解析>>

同步练习册答案