精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在长方形ABCD中,AB=4AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为秒,当的值为_____秒时,△ABP和△DCE全等.

A.1B.13C.17D.37

【答案】C

【解析】

分两种情况进行讨论,根据题意得出BP=2t=2AP=16-2t=2即可求得.

解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=16-2t=2,
解得t=7.
所以,当t的值为17秒时.△ABP和△DCE全等.
故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图:正方形ABCD,将RtEFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,RtEFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:

(1)求证:EP2+GQ2=PQ2

(2)若将RtEFG绕着点A逆时针旋转α(0°α90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;

(3)若将RtEFG绕着点A逆时针旋转α(90°α180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是高,EF分别是ABAC的中点.

1AB=6AC=4,求四边形AEDF的周长;

2EFAD有怎样的位置关系?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△AEC△DFB中,∠E∠F,点ABCD在同一直线上,有如下三个关系式:①AE∥DF②ABCD③CEBF.

(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:如果,那么”)

(2)选择(1)中你写出的一个命题,说明它正确的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠BAC=106°,EFMN分别是ABAC的垂直平分线,点ENBC上,则∠EAN=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块直角三角尺形状的木板余料,木工师傅要在此余料上锯出一块圆形的木板制作凳面,要想使锯出的凳面的面积最大.

(1)请你试着用直尺和圆规画出此圆(要求尺规作图,保留作图痕迹,不写作法).

(2)若此Rt△ABC的直角边分别为30cm40cm,试求此圆凳面的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),yx之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.

(1)甲车间每天加工零件为_____件,图中d值为_____

(2)求出乙车间在引入新设备后加工零件的数量yx之间的函数关系式.

(3)甲车间加工多长时间时,两车间加工零件总数为1000件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1在等腰Rt△ABCBAC=90°EAC上(且不与点AC重合.在ABC的外部作等腰Rt△CED使CED=90°连接AD分别以ABAD为邻边作平行四边形ABFD连接AF

1求证AEF是等腰直角三角形

2如图2CED绕点C逆时针旋转当点E在线段BC上时连接AE求证AF=AE

3如图3CED绕点C继续逆时针旋转当平行四边形ABFD为菱形CEDABC的下方时AB=2CE=2求线段AE的长

查看答案和解析>>

同步练习册答案