精英家教网 > 初中数学 > 题目详情
如图,已知反比例函数y1=
k
x
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.
解(1)∵S△AOB=1,∴
1
2
OA•OB=1,
又∵OB=1,∴AB=2,即A(1,2),
把A点坐标代入y1=
k
x
中,得k=2,∴y=
2
x

把y=-1代入y=
2
x
中,得x=-2,∴D(-2,-1),
设直线AD解析式为y=ax+b,
将A、D两点坐标代入,得
a+b=2
-2a+b=-1

解得
a=1
b=1

∴y=x+1;

(2)由直线y=x+1可知,C(-1,0),
则BC=OB+OC=2,AB=2,
所以,在Rt△ABC中,tan∠ACO=
AB
BC
=1,
故∠ACO=45°;

(3)由图象可知,当y1>y2时,x<-2或0<x<1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB面积为3.
(1)求k和m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
).
①求直线y=ax+b的关系式;
②据图象写出使反比例函数y=
k
x
的值大于一次函数y=ax+b的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角坐标系中y=mx和y=
m
x
(m>0)图象的交点为A、B,BD⊥y轴于D,S△ABD=4;直线A′B′由直线AB缓慢向下平移;
(1)求m的值;
(2)问直线A′B′向下平移多少单位时与经过B、D、A三点的抛物线刚好只有一个交点,并求出交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,反比例函数y=
k
x
的图象与一次函数y=-x+1的图象在第二象限内的交点坐标(-1,n),则k的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y1=kx+b的图象与反比例函数y2=
m
x
的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,
(1)求反比例函数y2=
m
x
和一次函数y1=kx+b的表达式;
(2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y=
k1
x
的图象与一次函数y=k2x+b的图象交于A、B两点,A(2,n),B(-1,-2).
(1)求反比例函数和一次函数的关系式;
(2)在直线AB上是否存在一点P,使△APO△AOB?若存在,求P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知直线y=k1x与双曲线y=
k2
x
(k1≠0)的一个交点的坐标为(-1,3),则它们的另一个交点的坐标是(  )
A.(-1,-3)B.(-1,3)C.(1,-3)D.(1,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P是反比例函数y=
1
x
的图象上任一点,PA垂直在轴,垂足为A,设△OAP的面积为S,则S的值为(  )
A.1B.2C.3D.
1
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在同一直角坐标系中,正比例函数y=(m-1)x与反比例函数y=
4m
x
的图象的大致位置可能是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案