【题目】某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买300元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券.(转盘被等分成20个扇形),已知甲顾客购物320元.
(1)他获得购物券的概率是多少?
(2)他得到100元、50元、20元购物券的概率分别是多少?
(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?请说明理由.
科目:初中数学 来源: 题型:
【题目】为倡导绿色出行,平阳县在昆阳镇设立了公共自行车服务站点,小明对某站点公共自行车的租用情况进行了调查,将该站点一天中市民每次租用公共自行车的时间t(单位:分)(t≤120)分成A,B,C,D四个组进行各组人次统计,并绘制了如下的统计图,请根据图中信息解答下列问题:
(1)该站点一天中租用公共自行车的总人次为 ,表示A的扇形圆心角的度数是 .
(2)补全条形统计图.
(3)考虑到公共自行车项目是公益服务,公共自行车服务公司规定:市民每次使用公共自行收费2元,已知昆阳镇每天租用公共自行车(时间在2小时以内)的市民平均有5000人次,据此估计公共自行车服务公司每天可收入多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC 中,AB=AC,D 是直线 BC 上一点(不与点 B、C 重合),以 AD 为一边在 AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连接 CE.
(1)如图 1,当点 D 在线段 BC 上时,求证:△ABD≌△ACE;
(2)如图 2,当点 D 在线段 BC 上时,如果∠BAC=90°,求∠BCE 的度数;
(3)如图 3,若∠BAC=α,∠BCE=β.点 D 在线段 CB 的延长线上时,则α、β之间有怎样 的数量关系?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交
于点A(1,4)、点B(-4,n).
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值: ÷(-a+2),其中a=2sin60°+3tan45°.
【答案】﹣.
【解析】试题分析:先因式分解,再通分,约分化简,代入数值求值.
试题解析:
解:原式= ÷(-)
=÷=,
∵a=2sin60°+3tan45°=2×+3×1=+3
∴原式==﹣.
点睛:辨析分式与分式方程
分式,整式A除以整式B,可以表示成的的形式.如果B中含有字母,那么称 为分式.分式特点是没有等号,分式加减一般需要通分.
(2)分式方程,分母中含有未知数的方程叫做分式方程.特点是有等号,要先确定最简公分母,去分母的时候要每一项乘以最简公分母,所以一般不需要通分,而且要检验.
【题型】解答题
【结束】
22
【题目】图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)如图1,在小正方形的顶点上确定一点C,连接AC、BC,使得△ABC为直角三角形,其面积为5,并直接写出△ABC的周长;
(2)如图2,在小正方形的顶点上确定一点D,连接AD、BD,使得△ABD中有一个内角为45°,且面积为3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为 ;
(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;
(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)如图,已知格点(小正方形的顶点):、、,若为格点,请直接画出所有以、为勾股边且对角线相等的勾股四边形;
(2)如图,将绕顶点按顺时针方向旋转,得到,连结、,,求证:,即四边形是勾股四边形;
(3)如图,在四边形中,为等边三角形,,,,求长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com