精英家教网 > 初中数学 > 题目详情
如图,矩形EFGH的边EF=6cm,EH=3cm,在?ABCD中,BC=10cm,AB=5cm,sin∠ABC=,点E、F、B、C在同一直线上,且FB=1cm,矩形从F点开始以1cm/s的速度沿直线FC向右运动,当边GF所在直线到达D点时即停止.
(1)在矩形运动过程中,何时矩形的一边恰好通过?ABCD的边AB或CD的中点.
(2)若矩形运动的同时,点Q从点C出发沿C-D-A-B的路线,以cm/s的速度运动,矩形停止时点Q也即停止运动,则点Q在矩形一边上运动的时间为多少s?
(3)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠部分面积S(cm2)与运动时间t(s)之间的函数关系式,并写出时间t的范围.是否存在某一时刻,使得重叠部分的面积S=16.5cm2?若存在,求出时间t,若不存在,说明理由.

【答案】分析:(1)何时矩形的一边恰好通过?ABCD的边AB或CD的中点,题目本身就不明确,到底是GF还是HE,经过了AB的中点还是CD的中点,所以必须分情况讨论,即①当GF边通过AB边的中点②当EH边通过AB边的中点③当GF边通过CD边的中点
(2)点Q在矩形一边上运动的时间为多少s,这里的“一边”是哪一边,必须分情况进行解释,所以也有三种情况.
(3)设当矩形运动到t(s)(7<t<11)时与平行四边形的重叠部分为五边形,则BE、AH都可用含有t的式子表示出来.在矩形EFGH中易证△AHP∽△BEP根据对应线段成比例,可求出EP的长,因此面积可表示出来.
解答:解:(1)作AM⊥BC,∵AB=5,sin∠ABC=3/5,
∴BM=4,AM=3(1分)
①当GF边通过AB边的中点N时,
有BF=BM=2,
∴t1=3(s).(2分)
②当EH边通过AB边的中点N时,
有BE=BM=2
∴BF=2+6=8
∴t2=8+1=9(s).(3分)
③当GF边通过CD边的中点K时,
有CF=2
∴t3=1+10+2=13(s)
综上,当t等于3s或9s或13s时,矩形的一边恰好通过平行四边形的边AB或CD的中点(每少一种情况扣1分).(4分)

(2)点Q从点C运动到点D所需的时间为:
5÷()=10(s)
此时,DG=1+14-10=5
点Q从D点运动开始到与矩形相遇所需的时间为:(6分)
∴矩形从与点Q相遇到运动停止所需的时间为:
从相遇到停止点Q运动的路程为:<6
即点Q从相遇到停止一直在矩形的边GH上运动
∴点Q在矩形的一边上运动的时间为:.(不交待理由扣1分)(8分)

(3)设当矩形运动到t(s)(7<t<11)时与平行四边形的重叠部分为五边形
则BE=t-7,AH=4-(t-7)=11-t
在矩形EFGH中,有AH∥BF
∴△AHP∽△BEP
=
=
∴PH=
∴S=18-
=-(t-11)2+18(7<t<11)(10分)
由对称性知当11<t<15时重叠部分仍为五边形
综上S与t的函数关系式为:S=-(t-11)2+18(7<t<15且t≠11)(12分)
(t的取值范围不正确扣2分)
把s=16.5代入得:16.5=-(t-11)2+18,
解得:t=9或13,
故当t=9或13时重叠部分的面积为16.5cm2.(13分)
点评:此题在解答过程中,一定要注意分情况讨论,另外还考查了二次函数的一些基本应用,考查比较全面,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,矩形EFGH的边EF=6cm,EH=3cm,在?ABCD中,BC=10cm,AB=5cm,sin∠ABC=
3
5
,点E、F、B、C在同一直线上,且FB=1cm,矩形从F点开始以1cm/s的速度沿直线FC向右运动,当边GF所在直线到达D点时即停止.
(1)在矩形运动过程中,何时矩形的一边恰好通过?ABCD的边AB或CD的中点.
(2)若矩形运动的同时,点Q从点C出发沿C-D-A-B的路线,以
1
2
cm/s的速度运动,矩形停止时点Q也即停止运动,则点Q在矩形一边上运动的时间为多少s?
(3)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠部分面积S(cm2)与运动时间t(s)之间的函数关系式,并写出时间t的范围.是否存在某一时刻,使得重叠部分的面积S=16.5cm2?若存在,求出时间t,若不存在,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•邯郸二模)如图,矩形EFGH的边EF=6cm,EH=3cm,在平行四边形ABCD中,BC=10cm,AB=5cm,sin∠ABC=
35
,点EFBC在同一直线上,且FB=1cm,矩形从F点开始以1cm/s的速度沿直线FC向右移动,当D点落在边CF所在直线上即停止.
(1)在矩形运动过程中,何时矩形的一边恰好通过平行四边形的边AB或CD的中点?
(2)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠面积S(cm2)与运动时间t(s)之间的函数关系式,并写出时间t的范围.是否存在某一时刻,使得重叠部分的面积S=16.5cm2?若存在,求出时间t,若不存在,说明理由.(3)若矩形运动的同时,点Q从点C出发沿C-D-A-B的路线,以0.5cm/s的速度运动,矩形停止时点Q也即停止运动,则点Q在进行一边上运动的时间为多少s?

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(39):27.3 实践与探索(解析版) 题型:解答题

如图,矩形EFGH的边EF=6cm,EH=3cm,在?ABCD中,BC=10cm,AB=5cm,sin∠ABC=,点E、F、B、C在同一直线上,且FB=1cm,矩形从F点开始以1cm/s的速度沿直线FC向右运动,当边GF所在直线到达D点时即停止.
(1)在矩形运动过程中,何时矩形的一边恰好通过?ABCD的边AB或CD的中点.
(2)若矩形运动的同时,点Q从点C出发沿C-D-A-B的路线,以cm/s的速度运动,矩形停止时点Q也即停止运动,则点Q在矩形一边上运动的时间为多少s?
(3)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠部分面积S(cm2)与运动时间t(s)之间的函数关系式,并写出时间t的范围.是否存在某一时刻,使得重叠部分的面积S=16.5cm2?若存在,求出时间t,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《四边形》(06)(解析版) 题型:解答题

(2007•盐城)如图,矩形EFGH的边EF=6cm,EH=3cm,在?ABCD中,BC=10cm,AB=5cm,sin∠ABC=,点E、F、B、C在同一直线上,且FB=1cm,矩形从F点开始以1cm/s的速度沿直线FC向右运动,当边GF所在直线到达D点时即停止.
(1)在矩形运动过程中,何时矩形的一边恰好通过?ABCD的边AB或CD的中点.
(2)若矩形运动的同时,点Q从点C出发沿C-D-A-B的路线,以cm/s的速度运动,矩形停止时点Q也即停止运动,则点Q在矩形一边上运动的时间为多少s?
(3)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠部分面积S(cm2)与运动时间t(s)之间的函数关系式,并写出时间t的范围.是否存在某一时刻,使得重叠部分的面积S=16.5cm2?若存在,求出时间t,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年河北省承德市中考数学一模试卷(解析版) 题型:解答题

(2007•盐城)如图,矩形EFGH的边EF=6cm,EH=3cm,在?ABCD中,BC=10cm,AB=5cm,sin∠ABC=,点E、F、B、C在同一直线上,且FB=1cm,矩形从F点开始以1cm/s的速度沿直线FC向右运动,当边GF所在直线到达D点时即停止.
(1)在矩形运动过程中,何时矩形的一边恰好通过?ABCD的边AB或CD的中点.
(2)若矩形运动的同时,点Q从点C出发沿C-D-A-B的路线,以cm/s的速度运动,矩形停止时点Q也即停止运动,则点Q在矩形一边上运动的时间为多少s?
(3)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠部分面积S(cm2)与运动时间t(s)之间的函数关系式,并写出时间t的范围.是否存在某一时刻,使得重叠部分的面积S=16.5cm2?若存在,求出时间t,若不存在,说明理由.

查看答案和解析>>

同步练习册答案