精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,直线x=﹣4交x轴于点C,交抛物线于点D.

(1)求该抛物线的解析式;
(2)点P在抛物线上,点E在直线x=﹣4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;
(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使?若存在,请直接写出d3的值;若不存在,请说明理由.
解:(1)∵抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,
,解得:
∴抛物线的解析式为
(2)∵点P在抛物线上,点E在直线x=﹣4上,
设点P的坐标为(m,,点E的坐标为(﹣4,n),
如图1,∵点A(﹣8,0),∴AO=8。

①当AO为一边时,EP∥AO,且EP=AO=8,
∴|m+4|=8,解得:m1=﹣12,m2=4。
∴P1(﹣12,14),P2(4,6)。
②当AO为对角线时,则点P和点E必关于点C成中心对称,故CE=CP。
,解得:
∴P3(﹣4,﹣6)。
综上所述,当P1(﹣12,14),P2(4,6),P3(﹣4,﹣6)时,A,O,E,P为顶点的四边形是平行四边形。
(3)存在4条符合条件的直线。d3的值为

试题分析:(1)利用待定系数法求出抛物线的解析式。
(2)平行四边形可能有多种情形,如答图1所述,需要分类讨论:
①以AO为一边的平行四边形,有2个;
②以AO为对角线的平行四边形,有1个,此时点P和点E必关于点C成中心对称。
(3)存在4条符合条件的直线。
如图2所示,连接BD,过点C作CH⊥BD于点H,

由题意得C(﹣4,0),B(2,0),D(﹣4,﹣6),
∴OC=4,OB=2,CD=6。∴△CDB为等腰直角三角形。
∴CH=CD•sin45°=6×=
∵BD=2CH,∴BD=
①∵CO:OB=2:1,
∴过点O且平行于BD的直线l1满足条件。
作BE⊥直线l1于点E,DF⊥直线l1于点F,设CH交直线l1于点G,
∴BE=DF,即:d1=d2
,即,∴d3=2d1,∴
∴CG=CH,即d3=
②如图2,在△CDB外作直线l2∥DB,延长CH交l2于点G′,使CH=HG′,
∴d3=CG′=2CH=
③如图3,过H,O作直线l3,作BE⊥l3于点E,DF⊥l3于点F,CG⊥l3于点G,

由①可知,DH=BH,则BE=DF,即:d1=d2
∵CO:OB=2:1,∴
作HI⊥x轴于点I,
∴HI=CI=CB=3,∴OI=4﹣3=1。

∵△OCH的面积=×4×3=×d3,∴d3=
④如图3,根据等腰直角三角形的对称性,可作出直线l4,易证:
,d3=
综上所述,存在直线l,使.d3的值为:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为   m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的对称轴是直线x=,与x轴交于点A、B两点,与y轴交于点C,并且点A的坐标为(—1,0).

(1)求抛物线的解析式;
(2)过点C作CD//x轴交抛物线于点D,连接AD交y轴于点E,连接AC,设△AEC的面积为S1, △DEC的面积为S2,求S1:S2的值;
(3)点F坐标为(6,0),连接D,在(2)的条件下,点P从点E出发,以每秒3个单位长的速度沿E→C→D→F匀速运动;点Q从点F出发,以每秒2个单位长的速度沿F→A匀速运动,当其中一点到达终点时,另外一点也随之停止运动.若点P、Q同时出发,设运动时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是直角三角形?请直接写出所有符合条件的t值..

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.

(1)写出这个二次函数的对称轴;
(2)设这个二次函数的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AD、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式。
[提示:如果一个二次函数的图象与x轴的交点为A,那么它的表达式可表示为:]

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数(m>0)的图象与x轴交于A、B两点.

(1)写出A、B两点的坐标(坐标用m表示);
(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;
(3)设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.

(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.

(1)求抛物线的解析式;
(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;
(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当SPAB≤6时,求点P的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣4,0),B(﹣1,3),C(﹣3,3)

(1)求此二次函数的解析式;
(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的最小值是     

查看答案和解析>>

同步练习册答案