分析 (1)由点A的坐标利用反比例函数图象上点的坐标特征即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法即可求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;
(3)根据两函数图象的上下位置关系即可得出不等式的解集;
(4)根据反比例函数的性质即可得到结果.
解答 解:(1)∵反比例函数y=$\frac{{k}_{1}}{x}$与一次函数y=k2x+b的图象交于点A(1,8)、B(-4,m),
∴k1=1×8=8,m=8÷(-4)=-2,
∴点B的坐标为(-4,-2).
将A(1,8)、B(-4,-2)代入y2=k2x+b中,
$\left\{\begin{array}{l}{{k}_{2}+b=8}\\{\;}\\{-{4k}_{2}+b=-2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{k}_{2}=2}\\{\;}\\{b=6}\end{array}\right.$.
∴k1=8,k2=2,b=6;
(2)当x=0时,y2=2x+6=6,
∴直线AB与y轴的交点坐标为(0,6).
∴S△AOB=$\frac{1}{2}$×6×4+$\frac{1}{2}$×6×1=15;
(3)观察函数图象可知:当-4<x<0或x>1时,一次函数的图象在反比例函数图象的上方,
∴不等式$\frac{{k}_{1}}{x}$<k2x+b的解为:-4≤x<0或x≥1;
(4)∵比例函数y=$\frac{{k}_{1}}{x}$的图象位于一、三象限,
∴在每个象限内,y随x的增大而减小,
∵x1<x2,y1<y2,
∴M,N在不同的象限,
∴M(x1,y1)在第三象限,N(x2,y2)在第一象限.
点评 本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com