A. | 20 | B. | 18 | C. | 16 | D. | 12 |
分析 根据等角对等边可得∠B=∠C,再根据两直线平行,同位角相等可得∠B=∠CDE,然后根据等角对等边可得CE=DE,同理可得BF=DF,然后求出四边形DEAF的周长=AB+AC,代入数据进行计算即可得解.
解答 解:∵AB=AC,
∴∠B=∠C,
∵DE∥AB,
∴∠B=∠CDE,
∴CE=DE,
同理可得BF=DF,
∴四边形DEAF的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC,
∵AB=AC=10,
∴四边形DEAF的周长=10+10=20.
故选A.
点评 本题主要考查了等腰三角形的判定与性质,平行线的性质,熟记等腰三角形的性质与判定求出四边形DEAF的周长=AB+AC是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 48° | B. | 50° | C. | 52° | D. | 58° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a>4 | B. | a>4或a<-4 | C. | a<-4 | D. | -4<a<4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3$+\sqrt{2}$=3$\sqrt{2}$ | B. | (2x2)3=2x5 | C. | 2a•5b=10ab | D. | $\sqrt{6}$÷$\sqrt{3}$=2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com