精英家教网 > 初中数学 > 题目详情

将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠。

(1)如图①,当点O落在AB边上的点D处时,点E的坐标为           ;
(2)如图②,当点O落在矩形OABC内部的点D处时,过点EEG轴交CD于点H,交BC于点G.求证:EHCH
(3)在(2)的条件下,设Hmn),写出mn之间的关系式                           
(4)如图③,将矩形OABC变为正方形,OC=10,当点EAO中点时,点O落在正方形OABC内部的点D处,延长CDAB于点T,求此时AT的长度。

(1)(0,5);(2)∠1=∠2.∵EG∥x轴,∴∠1=∠3. ∴∠2=∠3.∴EH=CH.
(3)(4).

解析试题分析:
(1)  当点O落在D点时候,则CD=OC=10.在Rt△DBC时,
BD=所以AD=AB-BD=10-6=4.设OE=x。则ED=x。AE=8-x、
。解得x=5.所以点E坐标(0,5);
(2)证明:(如图②)
由题意可知∠1=∠2.                                                             
∵EG∥x轴,∴∠1=∠3. ∴∠2=∠3.
∴EH=CH. 
(3) 
(4)解:(如图③)连接ET

由题意可知,EDEOEDTCDCOC=10,
EAO中点,∴AEEO.
AEED.
在Rt△ATE和Rt△DTE中,

∴Rt△ATE≌Rt△DTE(HL).
ATDT
,则
在Rt△BTC中,,

解得 ,即.
考点:折叠性质
点评:本题难度中等,主要考查学生对折叠性质结合几何性质等知识点综合运用能力。为中考常考题型,要求学生牢固掌握解题技巧。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA、OC边上选取适当的点E、F,连接EF,将△EOF沿EF折叠,使点O落在AB边上的点D处.
精英家教网
(1)如图1,当点F与点C重合时,OE的长度为
 

(2)如图2,当点F与点C不重合时,过点D作DG∥y轴交EF于点T,交OC于点G.求证:EO=DT;
(3)在(2)的条件下,设T(x,y),写出y与x之间的函数关系式为
 
,自变量x的取值范围是
 

(4)如图3,将矩形OABC变为平行四边形,放在平面直角坐标系中,且OC=10,OC边上的高等于8,点F与点C不重合,过点D作DG∥y轴交EF于点T,交OC于点G,求出这时T(x,y)的坐标y与x之间的函数关系式(不求自变量x的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南沙区一模)将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠.

(1)如图①,当点O落在AB边上的点D处时,点E的坐标为
(0,5)
(0,5)

(2)如图②,当点O落在矩形OABC内部的点D处时,过点E作EG∥x轴交CD于点H,交BC于点G.求证:EH=CH;
(3)在(2)的条件下,设H(m,n),写出m与n之间的关系式
m=
1
20
n2+5
m=
1
20
n2+5

(4)如图③,将矩形OABC变为正方形,OC=10,当点E为AO中点时,点O落在正方形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度.

查看答案和解析>>

科目:初中数学 来源:2013年广东省广州市南沙区中考一模数学试卷(解析版) 题型:解答题

将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠。

(1)如图①,当点O落在AB边上的点D处时,点E的坐标为           ;

(2)如图②,当点O落在矩形OABC内部的点D处时,过点EEG轴交CD于点H,交BC于点G.求证:EHCH

(3)在(2)的条件下,设Hmn),写出mn之间的关系式                           

(4)如图③,将矩形OABC变为正方形,OC=10,当点EAO中点时,点O落在正方形OABC内部的点D处,延长CDAB于点T,求此时AT的长度。

 

查看答案和解析>>

科目:初中数学 来源:2009年北京市朝阳区中考数学二模试卷(解析版) 题型:解答题

(2009•朝阳区二模)将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA、OC边上选取适当的点E、F,连接EF,将△EOF沿EF折叠,使点O落在AB边上的点D处.

(1)如图1,当点F与点C重合时,OE的长度为______;
(2)如图2,当点F与点C不重合时,过点D作DG∥y轴交EF于点T,交OC于点G.求证:EO=DT;
(3)在(2)的条件下,设T(x,y),写出y与x之间的函数关系式为______,自变量x的取值范围是______;
(4)如图3,将矩形OABC变为平行四边形,放在平面直角坐标系中,且OC=10,OC边上的高等于8,点F与点C不重合,过点D作DG∥y轴交EF于点T,交OC于点G,求出这时T(x,y)的坐标y与x之间的函数关系式(不求自变量x的取值范围).

查看答案和解析>>

同步练习册答案