精英家教网 > 初中数学 > 题目详情
2.计算
(1)-20+(-14)-(-18)-13;
(2)2+3×(-4)-(-2)2÷4;
(3)($\frac{2}{3}$+$\frac{3}{4}$-$\frac{5}{6}$)×(-12);
(4)(-2)3-$\frac{1}{3}$÷5×|1-(-4)2|.
(5)-14+8÷(-2)2-(-4)×(-3)
(6)(-199$\frac{24}{25}$)×5 (用简便方法计算)

分析 (1)首先对式子的符号进行化简,然后进行加减即可;
(2)首先计算乘方、把除法转化为乘法,首先计算乘法,然后进行加减计算即可;
(3)利用分配律即可化成乘法运算,再进行加减即可;
(4)首先计算乘方、把除法转化为乘法,首先计算乘法,然后进行加减计算即可;
(5)首先计算乘方、把除法转化为乘法,首先计算乘法,然后进行加减计算即可;
(6)首先化成-(200-$\frac{1}{25}$)×5的形式,然后利用分配律即可求解.

解答 解:(1)-20+(-14)-(-18)-13           
=-20-14+18-13
=-20-14-13+18
=-47+18
=-29;
(2)原式=2-12-4÷4=-10-1=-11;
(3)原式=$\frac{2}{3}$×12-$\frac{3}{4}$×12+$\frac{5}{6}$×12=8-9+10=9;
(4)原式=-8-$\frac{1}{3}$×$\frac{1}{5}$×15=-8-1=-9;
(5)原式=-1+8÷4-12=-1+2-12=-11;
(6)原式=-(200-$\frac{1}{25}$)×5=-1000+$\frac{1}{25}$×5=-1000+$\frac{1}{5}$=-999$\frac{4}{5}$.

点评 本题考查了有理数的混合运算,正确利用运算律,确定运算的顺序是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知,如图AB=AC,∠BAC=90°,M是AC的中点,AF⊥BM,垂足为F,说明:∠AMB=∠CMD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:(-18)×($\frac{1}{2}$-$\frac{5}{9}$+$\frac{5}{6}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
(1)(-2)×$\frac{3}{2}$÷(-$\frac{3}{4}$)×4        
(2)-16-|-5|+2×(-$\frac{1}{2}$)2
(3)2-54×($\frac{5}{6}$-$\frac{4}{9}$+$\frac{1}{3}$)                
(4)12÷($\frac{1}{6}$-$\frac{1}{2}$)+2×$\frac{1}{4}$-|$\frac{1}{2}$-3|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在Rt△ABC中,∠ACB=90°.
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:
①作∠ACB的平分线,交斜边AB于点D;
②过点D作AC的垂线,垂足为点E.
(2)在(1)作出的图形中,若CB=6,DE=4,则△BCD的面积为12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知△ABC中,AB=AC=8cm,∠B=∠C,BC=5cm,点D为AB的中点.
(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过$\frac{80}{3}$秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.用合适的方法解下列一元二次方程
(1)(x+6)2-9=0;                       
(2)2x2-8x+4=0(用配方法解);
(3)4x2-3x+2=0;                         
(4)(x-1)(x+3)=12;
(5)(2x-1)2+3(2x-1)+2=0;   
(6)$\sqrt{3}$x2-5x+2$\sqrt{3}$=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.比较大小:-2>-|-3|,-(-$\frac{3}{4}$)=-[+(-0.75)](填>=或<).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若|x-1|+|y+2|+|z-3|=0,则(x+1)(y-2)(z-3)的值是(  )
A.48B.-48C.0D.xyz

查看答案和解析>>

同步练习册答案