精英家教网 > 初中数学 > 题目详情
精英家教网已知,如图∠A=37°,∠C=90°,∠ADB=135°,AB=5、求△ABC的周长及AD的长,(精确到0.1)
参考数据:sin37°=0.602    cos37°=0.899    tan37°=0.75.
分析:在直角△ABC中,即可根据三角函数解得BC与AC,即可求得△ABC的面积;
已知ADB=135°,即可求得∠BDC的度数,在直角△BCD中依据三角函数即可求得CD,AC与CD的差即为AD的长.
解答:解:∵∠C=90°
∴sinA=
BC
AB
cosA=
AC
AB
(1分)
∴sin37°=
BC
5
cos37°=
AC
5

∴BC=0.602×5=3.010AC=0.899×5=4.495(3分)
∴△ABC的周长=AB+BC+AC=5+3.010+4.495=12.505≈12.5(4分)
∵∠ADC=135°
∴∠BDC=45°
∵∠C=90°
∴DC=BC=3.010(5分)
∴AD=AC-DC=4.495-3.010=1.485≈1.5(6分)
点评:本题主要考查了解直角三角形的方法,已知一个角的一个三角函数值即可求得其它的三角函数值,并且在一个直角三角形中,已知一边和一个锐角就能求出其它的边和角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,从地面上的点P测得大楼的某扇窗户A的仰角为37°,再从点P测得该大楼窗户A正上方的另一扇精英家教网窗户B,这时PA平分∠BPC.若点P到大楼的水平距离PC为10米.
(1)求∠BPC的度数;
(2)试求窗户B到地面的竖直高度BC(精确到0.1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,△ABC中,AD平分∠BAC,∠B=∠ADB,CE⊥AD于E,AE=5,AC-AB=4,则AC和AB分别为
7和3
7和3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图∠A=37°,∠C=90°,∠ADB=135°,AB=5、求△ABC的周长及AD的长,(精确到0.1)
参考数据:sin37°=0.602  cos37°=0.899  tan37°=0.75.

查看答案和解析>>

科目:初中数学 来源:重庆市月考题 题型:解答题

已知,如图∠A=37°,∠C=90°,∠ADB=135°,AB=5。求△ABC的周长及AD的长。(精确到0.1)
参考数据:sin37°=0.602    cos37°=0.899    tan37°=0.754

查看答案和解析>>

同步练习册答案