精英家教网 > 初中数学 > 题目详情
如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连接AE,CE,则△ADE的面积是   
【答案】分析:此题要求△ADE的面积,只需求得其底边AD上的高.根据旋转的性质,巧妙作辅助线,构造全等三角形.再根据直角梯形的性质,即可进行计算.
解答:解:如图,过D点作DG⊥BC于G,过E点作EF⊥AD交AD的延长线于F.
∠DGC=∠DFE=90°,∠GDC=∠FDE,
在△CDG与△EDF中,

∴△CDG≌△EDF.
∴EF=CG=3-2=1,即EF=GC=1.
∴△ADE的面积是×2×1=1.
点评:本题考查旋转的性质:
旋转变化前后,对应点到旋转中心的距离相等,以及每一对对应点与旋转中心连线所构成的旋转角相等.
要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形精英家教网ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求证:BC=CD;
(2)在边AB上找点E,连接CE,将△BCE绕点C顺时针方向旋转90°得到△DCF.连接EF,如果EF∥BC,试画出符合条件的大致图形,并求出AE:EB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳二模)如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)若EF=6,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.

查看答案和解析>>

同步练习册答案