【题目】如图,在平面直角坐标系中,一次函数的图像经过点,且与轴相交于点,与正比例函数的图像交于点,点的横坐标为.
(1)求 的值;
(2)若点在轴上,且满足,求点的坐标.
【答案】(1)k=-1,b=4(2)(0,12)或(0,-12)
【解析】
(1)由图形可知,点C的横坐标为1,利用一次函数图象上点的坐标特征可求出点C的坐标;根据点A、C的坐标,利用待定系数法即可求出k、b的值;
(2)先利用一次函数求出点B的坐标,设点D的坐标为(0,m),结合,得出关于m的一元一次方程;接下来解方程,即可得出m的值,进而可得点D的坐标.
解:(1)当x=1时,y=3x=3,
∴点C的坐标为(1,3).
将A(-2,6),C(1,3)代入y=kx+b得
解得k=1,b=4;
(2)当y=0时,有-x+4=0,
解得:x=4,
∴点B的坐标为(4,0).
设点D的坐标为(0,m)(m<0),
∵S△COD=S△BOC,
∴|m|=×4×3,
解得m=12,或m=-12
∴点D的坐标为(0,12)或(0,12).
故答案为:(1)k=-1,b=4;(2)(0,12)或(0,-12).
科目:初中数学 来源: 题型:
【题目】根据题意完成下列推理过程:
已知:如图,已知,,垂足分别为、,.求证:.
证明:,(已知)
(垂直的定义)
(__________)
__________(__________)
又(已知)
__________(__________)
(__________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-4x-m2=0
(1)求证:该方程有两个不等的实根;
(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点
(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.
(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线a,b被直线c,d所截,直线a,c,d相交于点O,按要求完成下列各小题.
(1)在图中的∠1~∠9这9个角中,同位角共有多少对?请你全部写出来;
(2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.
(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.
(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于三个数,用表示这三个数中最大数,例如:,
解决问题:
(1)填空:{,,}= ,如果{,,}=,则的取值范围为 ;
(2)如果{,,}=,求的值;
(3)如图,在同一坐标系中画出了三个一次函数的图象:,和
请观察这三个函数的图象,
①在图中画出{,,}对应的图像(加粗);
②{,,}的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.
求证:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com