精英家教网 > 初中数学 > 题目详情

【题目】将一张矩形纸片ABCD如图所示那样折起,使顶点C落在C′处,其中AB=4,若∠C′ED=30°,则折痕ED的长为(
A.4
B.
C.8
D.

【答案】C
【解析】解:由翻折变换得到,C′D=DC=AB=4,∠C′=90°,又因为∠C′ED=30°,所以ED=8. 故选C.
【考点精析】根据题目的已知条件,利用翻折变换(折叠问题)和解直角三角形的相关知识可以得到问题的答案,需要掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:

x

﹣1

0

2

3

4

y

5

2

2

5

10


(1)根据上表填空: ①这个抛物线的对称轴是 , 抛物线一定会经过点(﹣2,);
②抛物线在对称轴右侧部分是(填“上升”或“下降”);
(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是(
A.55°
B.30°
C.35°
D.40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为(  )
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=﹣7
D.x1=﹣1,x2=7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:

分 数 段

频数

频率

60≤x<70

9

a

70≤x<80

36

0.4

80≤x<90

27

b

90≤x≤100

c

0.2


请根据上述统计图表,解答下列问题:
(1)在表中,a= , b= , c=
(2)补全频数直方图;
(3)根据以上选取的数据,计算七年级学生的平均成绩.
(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y= 的图像上,则菱形的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,△DCE,△FEG是三个全等的等腰三角形,底边BC,CE,EG在同一直线上,且AB= ,BC=1,连结BF,分别交AC,DC,DE于点P,Q,R.

(1)求证:△BFG∽△FEG,并求出BF的长;
(2)求AP:PC的值;
(3)观察图形,请你提出一个与点P相关的问题,并进行解答.(根据提出问题的层次和解答过程平分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y1= 与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.
(1)求k1 , k2 , b的值;
(2)求△AOB的面积;
(3)请直接写出不等式 x+b的解.

查看答案和解析>>

同步练习册答案