分析 (1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价÷单价可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润×购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题.
解答 解:(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,
根据题意得:$\frac{7200}{1.2x}$-$\frac{3000}{x}$=2,
解得:x=1500,
经检验,x=1500是原分式方程的解,
∴1.2x=1500×1.2=1800.
答:甲种品牌空调的进货价为1500元/台,乙种品牌空调的进货价为1800元/台.
(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,
根据题意得:1500a+1800(10-a)≤16000,
解:a≥$\frac{20}{3}$.
∵a≤10,且a为正整数,
∴a=7,8,9,10.
∵y=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,其中k=-700<0,
∴y的值随着a的值的增大而减小,
∴当a=7时,y取得最大值,此时y=-7×700+17000=12100.
答:进货方案为:购进甲种空调7台,乙种空调3台,可获得最大利润,最大利润为12100元.
点评 本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程;(2)根据总利润=单台利润×购进数量找出y关于a的函数关系式.
科目:初中数学 来源: 题型:选择题
A. | 对石家庄市辖区内地下水水质情况的调查 | |
B. | 对一个社区每天丢弃塑料袋数量的调查 | |
C. | 对乘坐飞机的旅客是否携带违禁物品的调查 | |
D. | 对河北电视台“中华好诗词”栏目收视率的调查 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com